石墨烯
材料科学
导线
磁场
纳米技术
氧化物
热导率
基质(水族馆)
光电子学
复合材料
量子力学
海洋学
物理
地质学
冶金
作者
Yifan Zhi,Zihe Li,Jiahan Xu,Yujuan Wei,Jia Xu,Huanxia Zhang
标识
DOI:10.1016/j.colsurfa.2023.131875
摘要
Graphene/textile stretchable devices have garnered significant attention in the field of flexible wearable smart devices due to their inherent softness, flexibility, scalability, and breathability. In particular, the development of heat dissipation and sensing materials that exhibit efficient heat and electrical transfer properties presents a considerable challenge that requires the creation of a highly continuous graphene network within textile substrates. This study seeks to address this challenge through the oriented of graphene structure via magnetic fields. By inducing a magnetic field and employing a simple impregnation method, graphene is adsorbed in an orderly fashion onto a polyester (PET) substrate. The resulting magnetic reduced graphene oxide-polyester (MrGO-PET) composite material exhibits thermal conductivity values of 5.53 W/mK, 4.1 W/mK and 8.02 W/mK along the XYZ axes respectively and demonstrates stability under 10 heating-cooling cycles. When applied to LED chips for heat dissipation purposes, MrGO-PET achieves lower surface temperatures and broader temperature distribution ranges. Following integration, MrGO-PET serves as a temperature sensor with high sensitivity (TCR = −0.594 ℃-1) and precision (0.1 ℃) within the 25–50 ℃ range while exhibiting fast response times (42 s) within the 36.5–40 ℃ range alongside good heating-cooling cycle stability. Our research represents a valuable attempt to establish enhanced functionality at macroscopic scales for two-dimensional nanomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI