已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on red tide short-time prediction using GRU network model based on multi-feature Factors——A case in Xiamen sea area

赤潮 盐度 环境科学 浊度 风速 叶绿素a 气象学 海洋学 大气科学 化学 地质学 地理 生物化学
作者
Xiao Song,liang Jian-feng,W.A.N. Fang-fang,Yuze Xuan,Shi xiaoxiao,H.A.N. Lu-yao,W.E.I. Guang-hao,Z.H.E.N.G. Bing,MohdFadzilMohd Akhir,Aidy M. Muslim,Izwandy Idris
出处
期刊:Marine Environmental Research [Elsevier BV]
卷期号:182: 105727-105727 被引量:2
标识
DOI:10.1016/j.marenvres.2022.105727
摘要

Red tide caused severe impacts on marine fisheries, ecology, economy and human life safety. The formation mechanism of the red tide is rather complicated; thus, red tide prediction and forecasting have long been a research hotspot around the globe. This study collected ocean monitoring data before and after the occurrence of red tides in Xiamen sea area from 2009 to 2017. The Pearson correlation coefficient method was used to obtain the associated factors of red tide occurrence, including water temperature, saturated dissolved oxygen, dissolved oxygen, chlorophyll-aand potential of hydrogen. Then, we built a short-time red tide prediction model based on the combination of multiple feature factors. chlorophyll-a, dissolved oxygen, saturated dissolved oxygen, potential of hydrogen, water temperature, salinity, turbidity, wind speed, wind direction and Air pressure were used as the input variables, building a short-time prediction model based on the combination of multiple feature factors to forecast red tide in the next 6 h by using the monitoring data. The accuracy of different forecast models with different feature combinations was compared. Results show that the distinguishing factors which have the most significant influence on red tide prediction in Xiamen are chlorophyll-a, dissolved oxygen, saturated dissolved oxygen, potential of hydrogen, and water temperature. the convergence speed of the Gated Recurrence Unit (GRU) prediction model based on the main feature factor proposed in this paper was faster and obtained the expected result, and the accuracy rates of the buoys are above 92%. The research shows the feasibility to use GRU network model to predict the occurrence of red tide with multi-feature factors as input parameters. the paper provides an effective method for the red tide early warning in Xiamen sea area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的帆布鞋应助XL神放采纳,获得10
刚刚
JamesPei应助wzx采纳,获得10
1秒前
tttt发布了新的文献求助10
2秒前
phd发布了新的文献求助10
2秒前
怕黑康发布了新的文献求助10
4秒前
6秒前
李健的小迷弟应助薛雨佳采纳,获得10
6秒前
本本完成签到 ,获得积分10
8秒前
LT发布了新的文献求助100
9秒前
积极的觅松完成签到 ,获得积分10
10秒前
云上人完成签到 ,获得积分10
12秒前
LinniL完成签到,获得积分10
14秒前
袁庚完成签到 ,获得积分10
14秒前
15秒前
15秒前
yuan完成签到,获得积分10
16秒前
Ephemeral完成签到 ,获得积分10
17秒前
18秒前
田田圈发布了新的文献求助10
19秒前
展会恩完成签到,获得积分10
20秒前
徐涛完成签到 ,获得积分10
20秒前
Echo发布了新的文献求助10
20秒前
瘦瘦寄风发布了新的文献求助10
22秒前
磊少完成签到,获得积分10
23秒前
淡然靖柔完成签到,获得积分10
23秒前
dfk发布了新的文献求助30
24秒前
平淡的香岚给平淡的香岚的求助进行了留言
25秒前
可爱的函函应助Goofyyy采纳,获得10
27秒前
空港完成签到,获得积分10
28秒前
青山完成签到 ,获得积分10
29秒前
瘦瘦寄风完成签到,获得积分10
32秒前
泡泡鱼完成签到 ,获得积分10
33秒前
123完成签到,获得积分10
33秒前
34秒前
诸葛小哥哥完成签到 ,获得积分0
36秒前
唐唐完成签到 ,获得积分10
36秒前
远方完成签到 ,获得积分10
39秒前
newplayer完成签到,获得积分10
39秒前
顾矜应助云深不知处采纳,获得10
39秒前
彭于晏应助chuanyongcui采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4728318
求助须知:如何正确求助?哪些是违规求助? 4084538
关于积分的说明 12632861
捐赠科研通 3791585
什么是DOI,文献DOI怎么找? 2093818
邀请新用户注册赠送积分活动 1119689
科研通“疑难数据库(出版商)”最低求助积分说明 995869