Research on red tide short-time prediction using GRU network model based on multi-feature Factors——A case in Xiamen sea area

赤潮 盐度 环境科学 浊度 风速 叶绿素a 气象学 海洋学 大气科学 化学 地质学 地理 生物化学
作者
Xiao Song,liang Jian-feng,W.A.N. Fang-fang,Yuze Xuan,Shi xiaoxiao,H.A.N. Lu-yao,W.E.I. Guang-hao,Z.H.E.N.G. Bing,MohdFadzilMohd Akhir,Aidy M. Muslim,Izwandy Idris
出处
期刊:Marine Environmental Research [Elsevier BV]
卷期号:182: 105727-105727 被引量:2
标识
DOI:10.1016/j.marenvres.2022.105727
摘要

Red tide caused severe impacts on marine fisheries, ecology, economy and human life safety. The formation mechanism of the red tide is rather complicated; thus, red tide prediction and forecasting have long been a research hotspot around the globe. This study collected ocean monitoring data before and after the occurrence of red tides in Xiamen sea area from 2009 to 2017. The Pearson correlation coefficient method was used to obtain the associated factors of red tide occurrence, including water temperature, saturated dissolved oxygen, dissolved oxygen, chlorophyll-aand potential of hydrogen. Then, we built a short-time red tide prediction model based on the combination of multiple feature factors. chlorophyll-a, dissolved oxygen, saturated dissolved oxygen, potential of hydrogen, water temperature, salinity, turbidity, wind speed, wind direction and Air pressure were used as the input variables, building a short-time prediction model based on the combination of multiple feature factors to forecast red tide in the next 6 h by using the monitoring data. The accuracy of different forecast models with different feature combinations was compared. Results show that the distinguishing factors which have the most significant influence on red tide prediction in Xiamen are chlorophyll-a, dissolved oxygen, saturated dissolved oxygen, potential of hydrogen, and water temperature. the convergence speed of the Gated Recurrence Unit (GRU) prediction model based on the main feature factor proposed in this paper was faster and obtained the expected result, and the accuracy rates of the buoys are above 92%. The research shows the feasibility to use GRU network model to predict the occurrence of red tide with multi-feature factors as input parameters. the paper provides an effective method for the red tide early warning in Xiamen sea area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快棒棒糖完成签到,获得积分10
1秒前
2秒前
小元发布了新的文献求助10
5秒前
serenity711完成签到 ,获得积分10
8秒前
Ava应助可可采纳,获得10
8秒前
Marjorie完成签到,获得积分10
9秒前
12秒前
12秒前
13秒前
共享精神应助科研通管家采纳,获得10
15秒前
阿飘应助科研通管家采纳,获得10
15秒前
joker_k应助科研通管家采纳,获得20
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
阿飘应助科研通管家采纳,获得10
15秒前
iNk应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
情怀应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
SciGPT应助拉布拉多多不多采纳,获得10
16秒前
热情孤丹发布了新的文献求助10
17秒前
19秒前
Vvvnnnaa1完成签到,获得积分10
20秒前
23秒前
24秒前
史迪奇完成签到,获得积分20
25秒前
123七八完成签到,获得积分10
25秒前
26秒前
正直绍辉发布了新的文献求助10
26秒前
27秒前
脑洞疼应助柔弱小懒虫采纳,获得10
28秒前
英俊的铭应助辛勤的乐曲采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778345
求助须知:如何正确求助?哪些是违规求助? 3323941
关于积分的说明 10216732
捐赠科研通 3039243
什么是DOI,文献DOI怎么找? 1667897
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385