硼
氦
铝
材料科学
放射化学
核反应
冶金
核工程
核物理学
化学
物理
原子物理学
工程类
作者
Kaiguo Chen,Qi Huang,Zu-Gen Zhang,Ping Song,Yao Shen,Yuying Yu,Jiayu Dai
出处
期刊:Heliyon
[Elsevier]
日期:2024-06-01
卷期号:10 (12): e32651-e32651
标识
DOI:10.1016/j.heliyon.2024.e32651
摘要
The study of metals and alloys containing helium has garnered significant attention within the nuclear energy community. However, there is limited research on the mechanical behavior of bulk alloys implanted with helium. This study investigates the mechanical properties of several Al-Boron alloys implanted with helium using controlled manipulation of helium doses via boron content under a consistent neutron dose. Results show that HemVn may contribute to strength by approximately 8.4-15 MPa and 16.8-23 MPa for helium doses 3.08 × 1019/cm3 and 6.84 × 1019/cm3, respectively, while lattice damages due to neutron-aluminum reaction contribute to strength by 24∼27 MPa. Subsequent annealing leads to the formation of helium bubbles, resulting in a slightly higher strengthening effect compared to HemVn. Additionally, the work hardening behavior of the alloys can be explained by the Voce model, drawing inspiration from the resemblance between helium bubbles and nanoprecipitates in 7xxx alloys. These findings provide insights to the nuclear energy community.
科研通智能强力驱动
Strongly Powered by AbleSci AI