气凝胶
材料科学
保温
热的
热稳定性
刚度
弹性(材料科学)
灵敏度(控制系统)
纳米纤维
航程(航空)
纳米技术
微尺度化学
聚酰亚胺
复合材料
电子设备和系统的热管理
聚合物
碳纳米管
环境压力
蜂巢
热保护
纳米传感器
压缩性
大气温度范围
热桥
灵活性(工程)
纳米材料
温度梯度
热导率
作者
Chunmei Li,Rui Xu,Dong Han,Puhao Li,Wei Liu,Mingjian Guang,Xujiang Chao,Peng Wang
标识
DOI:10.1038/s41467-025-66627-6
摘要
Striking a balance between sensitivity and detection range while ensuring stability under extreme temperatures remains a formidable challenge in the design of flexible pressure sensors. To address this issue, we draw inspiration from the multi-gradient architectures of nature and propose a bottom-up self-assembly strategy. By leveraging a meticulously orchestrated multi-step approach that encompasses electrospinning, sequential freezing, and thermal imidization, we successfully fabricate a polyimide nanofiber/carbon nanotube dual-gradient aerogel with a dynamic stiffness transition from flexible to rigid states. Experimental results highlight notable properties of the dual-gradient aerogel, which exhibits an ultralow density (0.023 g cm-3), efficient thermal insulation (28 mW m-1 K-1), and reliable compressibility and fatigue resistance. Moreover, it establishes a favorable equilibrium between sensitivity (156 MPa-1) and an extensive detection range (223 kPa). Notably, the combination of thermal resilience (-196 °C to 533.30 °C) and mechanical stability enables performance that is comparable to, or in some aspects surpasses, that of conventional flexible sensing materials. This dual-gradient aerogel provides both effective thermal insulation and high-precision physiological monitoring under extreme conditions, offering integrated thermal protection and real-time astronaut health assessment in spacesuits.
科研通智能强力驱动
Strongly Powered by AbleSci AI