DSCostPred: a double-stacking model for construction cost prediction

堆积 计算机科学 变量(数学) 功能(生物学) 机器学习 数据挖掘 人工智能 非线性系统 干扰(通信) 变量 预测建模 数学优化 过程(计算) 结构化预测 算法 人工神经网络 芯(光纤)
作者
Chen-ping Liu,Xi Sun,Jian-Hua Guan
出处
期刊:Scientific Reports [Springer Nature]
标识
DOI:10.1038/s41598-025-33305-y
摘要

The prediction of construction project cost plays a core role in engineering construction projects. However, the current prediction involves a multi-dimensional and dynamically variable system, and each major category can be further subdivided into many specific factors. Meanwhile, variables' relationships present a complex network of nonlinearity and interaction, which seriously affected the prediction accuracy. To solve this problem, we proposed a dual-stacking construction cost prediction method based on variable stacking and model stacking (DSCostPred). This method emphasizes that classifying variables and applying different algorithms respectively can avoid the impact of variables' functional differences. First, the variables are pre-classified to avoid mutual interference among them. Then, to learn the attribute and function positioning, as well as the complex interaction among them, different types of models are utilized to learn the variables. In algorithm design, to achieve the organic combination of multiple attributes and multiple models, a variable stacking is introduced into stacking ensemble learning to form collaborative predictions with model stacking. This method was compared with the classical method on real data, and the results show the superior performance. In addition, the ablation experiments and SHAP analysis also demonstrated the feasibility of the double-stacking idea we proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助盛通采纳,获得10
1秒前
zjj完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
zoe发布了新的文献求助10
2秒前
HXY完成签到,获得积分10
2秒前
2秒前
执着从灵完成签到,获得积分10
3秒前
负责的问寒完成签到,获得积分10
3秒前
5秒前
kaka应助流水不争先采纳,获得10
6秒前
执着从灵发布了新的文献求助10
6秒前
6秒前
独孤阳光完成签到,获得积分10
7秒前
LSHS发布了新的文献求助10
7秒前
xiao123789发布了新的文献求助10
7秒前
lqtnb发布了新的文献求助10
7秒前
xxy完成签到,获得积分10
8秒前
情怀应助Potato采纳,获得10
8秒前
feng完成签到,获得积分20
8秒前
完美世界应助负责的问寒采纳,获得10
8秒前
Gigi发布了新的文献求助10
8秒前
9秒前
Owen应助粗心的半仙采纳,获得10
9秒前
9秒前
Mrwang完成签到,获得积分10
9秒前
10秒前
wilsss发布了新的文献求助20
10秒前
研友_VZG7GZ应助dadaguai采纳,获得10
11秒前
JamesPei应助幸福的绮波采纳,获得10
11秒前
癫狂梦醒完成签到,获得积分10
11秒前
海比天蓝发布了新的文献求助10
11秒前
魏无羡发布了新的文献求助10
12秒前
ytdhfuyvjk发布了新的文献求助10
13秒前
howard发布了新的文献求助10
14秒前
伶俐的慕山完成签到,获得积分10
15秒前
zoe完成签到,获得积分10
15秒前
怕黑的傲蕾完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656468
求助须知:如何正确求助?哪些是违规求助? 4803520
关于积分的说明 15075928
捐赠科研通 4814762
什么是DOI,文献DOI怎么找? 2575957
邀请新用户注册赠送积分活动 1531260
关于科研通互助平台的介绍 1489863