HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B

cccDNA 乙型肝炎病毒 生物 病毒学 DNA 病毒复制 乙型肝炎 病毒 遗传学 乙型肝炎表面抗原
作者
Michael Nassal
出处
期刊:Gut [BMJ]
卷期号:64 (12): 1972-1984 被引量:850
标识
DOI:10.1136/gutjnl-2015-309809
摘要

At least 250 million people worldwide are chronically infected with HBV, a small hepatotropic DNA virus that replicates through reverse transcription. Chronic infection greatly increases the risk for terminal liver disease. Current therapies rarely achieve a cure due to the refractory nature of an intracellular viral replication intermediate termed covalently closed circular (ccc) DNA. Upon infection, cccDNA is generated as a plasmid-like episome in the host cell nucleus from the protein-linked relaxed circular (RC) DNA genome in incoming virions. Its fundamental role is that as template for all viral RNAs, and in consequence new virions. Biosynthesis of RC-DNA by reverse transcription of the viral pregenomic RNA is now understood in considerable detail, yet conversion of RC-DNA to cccDNA is still obscure, foremostly due to the lack of feasible, cccDNA-dependent assay systems. Conceptual and recent experimental data link cccDNA formation to cellular DNA repair, which is increasingly appreciated as a critical interface between cells and viruses. Together with new in vitro HBV infection systems, based on the identification of the bile acid transporter sodium taurocholate cotransporting polypeptide as an HBV entry receptor, this offers novel opportunities to decipher, and eventually interfere with, formation of the HBV persistence reservoir. After a brief overview of the role of cccDNA in the HBV infectious cycle, this review aims to summarise current knowledge on cccDNA molecular biology, to highlight the experimental restrictions that have hitherto hampered faster progress and to discuss cccDNA as target for new, potentially curative therapies of chronic hepatitis B.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snow完成签到,获得积分10
刚刚
1秒前
haimianbaobao完成签到 ,获得积分10
2秒前
3秒前
大力山槐发布了新的文献求助10
4秒前
4秒前
有人喜欢蓝完成签到,获得积分10
4秒前
Hello应助GHL采纳,获得10
5秒前
李爱国应助曾叫兽采纳,获得10
5秒前
5秒前
5秒前
学术小白铼完成签到,获得积分10
6秒前
6秒前
冷艳惜梦发布了新的文献求助30
6秒前
pluto应助活力论文采纳,获得10
6秒前
安红豆关注了科研通微信公众号
6秒前
7秒前
残剑月应助Tree_QD采纳,获得10
7秒前
7秒前
含蓄青文发布了新的文献求助10
8秒前
今后应助端庄的乐枫采纳,获得10
8秒前
8秒前
顶顶顶顶完成签到,获得积分20
10秒前
10秒前
汉堡包应助老实的寒安采纳,获得10
10秒前
研友_VZG7GZ应助木贝贝采纳,获得30
10秒前
happiness发布了新的文献求助10
10秒前
Hey发布了新的文献求助10
11秒前
直率谷蕊发布了新的文献求助10
11秒前
大个应助yuyuan采纳,获得10
11秒前
11秒前
12秒前
12秒前
曾叫兽完成签到,获得积分10
12秒前
顶顶顶顶发布了新的文献求助10
12秒前
13秒前
13秒前
禛禛发布了新的文献求助10
14秒前
goldfish发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293