纤维连接蛋白
细胞外基质
板层
生物物理学
牵引(地质)
材料科学
细胞粘附
焦点粘着
化学
粘附
细胞迁移
细胞
细胞生物学
生物化学
复合材料
生物
古生物学
作者
Yue Xu,Jing Li,Shuai Zhou,Xuan Tang,Yanli Zhang,Feng Lin,Chunyang Xiong,Chun Yang
标识
DOI:10.1021/acsbiomaterials.6b00598
摘要
Cell response to substrate rigidity, closely related to extracellular matrix protein composition, requires actomyosin-generated contractility. By introducing coefficients describing cell spreading and traction dynamics, and a revised high-resolution traction force microscopy, we analyzed the static and dynamic features of fibroblasts on fibronectin- or collagen- coated stiff or soft substrates. Large cell spreading area and branchlike morphology were more favorable on fibronectin than collagen. Cell spreading on fibronectin-coated substrates was more sensitive to rigidity compared with collagen. Low concentration fibronectin-coated substrate induced more dynamic lamellipodia movement than other conditions. Interestingly, the static average cell traction on high concentration fibronectin-coated stiff and soft substrates showed no difference. However, the lamellipodium traction dynamics was sensitive to rigidity on fibronectin. Particularly, lamellipodia on fibronectin-coated soft substrate performed much higher local traction dynamics compared with other groups. Together, dynamics of cell adhesion and traction are regulated by extracellular matrix protein composition, coupled with substrate rigidity.
科研通智能强力驱动
Strongly Powered by AbleSci AI