A novel strategy of integrated microarray analysis identifies CENPA, CDK1 and CDC20 as a cluster of diagnostic biomarkers in lung adenocarcinoma

细胞周期蛋白依赖激酶1 腺癌 计算生物学 微阵列 生物 诊断生物标志物 CDC20型 微阵列分析技术 生物标志物 癌症研究 医学 生物信息学 遗传学 细胞周期 内科学 癌症 基因 基因表达 后期
作者
Wan-Ting Liu,Yang Wang,Jing Zhang,Fei Ye,Xiaohui Huang,Bin Li,Qing He
出处
期刊:Cancer Letters [Elsevier BV]
卷期号:425: 43-53 被引量:73
标识
DOI:10.1016/j.canlet.2018.03.043
摘要

Lung adenocarcinoma (LAC) is the most lethal cancer and the leading cause of cancer-related death worldwide. The identification of meaningful clusters of co-expressed genes or representative biomarkers may help improve the accuracy of LAC diagnoses. Public databases, such as the Gene Expression Omnibus (GEO), provide rich resources of valuable information for clinics, however, the integration of multiple microarray datasets from various platforms and institutes remained a challenge. To determine potential indicators of LAC, we performed genome-wide relative significance (GWRS), genome-wide global significance (GWGS) and support vector machine (SVM) analyses progressively to identify robust gene biomarker signatures from 5 different microarray datasets that included 330 samples. The top 200 genes with robust signatures were selected for integrative analysis according to "guilt-by-association" methods, including protein-protein interaction (PPI) analysis and gene co-expression analysis. Of these 200 genes, only 10 genes showed both intensive PPI network and high gene co-expression correlation (r > 0.8). IPA analysis of this regulatory networks suggested that the cell cycle process is a crucial determinant of LAC. CENPA, as well as two linked hub genes CDK1 and CDC20, are determined to be potential indicators of LAC. Immunohistochemical staining showed that CENPA, CDK1 and CDC20 were highly expressed in LAC cancer tissue with co-expression patterns. A Cox regression model indicated that LAC patients with CENPA+/CDK1+ and CENPA+/CDC20+ were high-risk groups in terms of overall survival. In conclusion, our integrated microarray analysis demonstrated that CENPA, CDK1 and CDC20 might serve as novel cluster of prognostic biomarkers for LAC, and the cooperative unit of three genes provides a technically simple approach for identification of LAC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
冰魂应助西兰花啊采纳,获得10
4秒前
nothing完成签到 ,获得积分10
5秒前
w934420513发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
77完成签到 ,获得积分10
9秒前
14秒前
alpha完成签到,获得积分10
16秒前
18秒前
baobao发布了新的文献求助30
19秒前
翁若翠发布了新的文献求助10
20秒前
乔木完成签到,获得积分10
20秒前
研友_VZG7GZ应助奋斗的绿凝采纳,获得10
20秒前
和平港湾发布了新的文献求助10
24秒前
Yang_Energy完成签到,获得积分10
24秒前
华仔应助强健的冰旋采纳,获得10
25秒前
28秒前
31秒前
ACMI完成签到 ,获得积分10
31秒前
Apple发布了新的文献求助10
32秒前
32秒前
刘彤完成签到,获得积分10
33秒前
可爱的函函应助Emma采纳,获得10
35秒前
海马体发布了新的文献求助10
37秒前
mingyu发布了新的文献求助10
37秒前
38秒前
38秒前
炙热的雪糕完成签到,获得积分10
39秒前
42秒前
逆蝶完成签到,获得积分10
43秒前
西兰花啊发布了新的文献求助10
43秒前
英姑应助Stanislav采纳,获得10
44秒前
L_online发布了新的文献求助30
44秒前
mingyu完成签到 ,获得积分10
49秒前
脑洞疼应助终澈采纳,获得10
50秒前
DT完成签到,获得积分10
52秒前
科研通AI5应助德坚采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778170
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10215999
捐赠科研通 3039020
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758339