Channel State Information Prediction for Adaptive Underwater Acoustic Downlink OFDMA System: Deep Neural Networks Based Approach

计算机科学 信道状态信息 正交频分复用 副载波 正交频分多址 电信线路 人工神经网络 实时计算 频道(广播) 电子工程 无线 人工智能 工程类 计算机网络 电信
作者
Lei Liu,Lin Cai,Lu Ma,Gang Qiao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 9063-9076 被引量:53
标识
DOI:10.1109/tvt.2021.3099797
摘要

In underwater acoustic (UWA) adaptive communication system, due to time-varying channel, the transmitter often has outdated channel state information (CSI), which results in low efficiency. UWA channels are much more difficult to estimate and predict than terrestrial wireless channels, given the more severe multipath environments with varying propagation speeds in different locations, non-linear propagation paths, several-order higher propagation latency, mobile transceiver and obstacles in the sea, etc. To handle the complexity, this paper proposes an efficient online CSI prediction model for UWA CSI prediction considering the complicated correlationship of UWA channels in both the time and frequency domains. This paper designs a learning model called CsiPreNet, which is an integration of a one-dimensional convolutional neural network (CNN) and a long short term memory (LSTM) network. The performance is compared with the widely used recursive least squares (RLS) predictor, the approximate linear dependency recursive kernel least-squares (ALD-KRLS), and two common conventional deep neural networks (DNN) predictors, i.e., back propagation neural network (BPNN) and LSTM network using the measured data recorded in the South China Sea. To validate the efficacy of prediction, we investigate the prediction of CSI in simulated downlink UWA orthogonal frequency division multiple access (OFDMA) systems. Specifically, the measured UWA channel is used in the OFDMA system. A joint subcarrier-bit-power adaptive allocation scheme is used for resource allocation. To further improve the performance, we develop an offline-online prediction scheme, enabling the prediction results to be more stable. Simulation and experimental results show that the CsiPreNet has superior performance than the existing solutions, thanks to its capability in capturing both the temporal and frequency correlation of the UWA CSIs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的巧蕊完成签到,获得积分10
1秒前
LeuinPonsgi完成签到,获得积分10
1秒前
1秒前
11111111完成签到,获得积分10
2秒前
肉片牛帅帅完成签到,获得积分10
2秒前
Ying完成签到,获得积分10
2秒前
落后访风完成签到,获得积分10
3秒前
快乐小恬完成签到 ,获得积分10
4秒前
务实鞅完成签到 ,获得积分10
6秒前
lilei完成签到,获得积分10
7秒前
高贵的思天完成签到,获得积分10
7秒前
7秒前
大胆的幻巧完成签到,获得积分10
8秒前
梅子完成签到 ,获得积分10
8秒前
纯情的远山完成签到,获得积分10
10秒前
聪明的宛菡完成签到,获得积分10
11秒前
从容鞋子完成签到,获得积分10
11秒前
briliian完成签到,获得积分10
12秒前
凤凰山完成签到,获得积分10
13秒前
13秒前
GOD伟完成签到,获得积分10
13秒前
为你等候完成签到,获得积分10
13秒前
yuan完成签到,获得积分10
14秒前
温柔樱桃完成签到 ,获得积分10
14秒前
爆米花应助rwewe采纳,获得10
14秒前
小斌完成签到,获得积分10
15秒前
ccherty完成签到,获得积分10
16秒前
繁荣的忆文完成签到,获得积分10
17秒前
17秒前
开心向真完成签到,获得积分10
17秒前
凤凰山发布了新的文献求助10
17秒前
田様应助brick2024采纳,获得10
19秒前
gms完成签到,获得积分10
19秒前
苗苗完成签到,获得积分10
20秒前
21秒前
共享精神应助小斌采纳,获得10
21秒前
科研通AI5应助Fenta采纳,获得10
22秒前
勤奋完成签到,获得积分0
22秒前
英姑应助zzzoey采纳,获得10
23秒前
小李老博发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804299
求助须知:如何正确求助?哪些是违规求助? 3349099
关于积分的说明 10341704
捐赠科研通 3065225
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808587
科研通“疑难数据库(出版商)”最低求助积分说明 764620