Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments

人工智能 机器学习 卷积神经网络 计算机科学 支持向量机 深度学习 感知器 自动化 随机森林 特征提取 人工神经网络 工程类 机械工程
作者
Muhammad Hammad Saleem,Johan Potgieter,Khalid Mahmood Arif
出处
期刊:Precision Agriculture [Springer Science+Business Media]
卷期号:22 (6): 2053-2091 被引量:268
标识
DOI:10.1007/s11119-021-09806-x
摘要

Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无情平松完成签到,获得积分10
2秒前
Orange应助周周采纳,获得10
2秒前
4秒前
坦率抽屉完成签到 ,获得积分10
4秒前
无敌万达阿迪萨完成签到,获得积分20
5秒前
美好斓发布了新的文献求助10
5秒前
6秒前
7秒前
drinkfish完成签到,获得积分10
9秒前
汉堡包应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
一二发布了新的文献求助10
9秒前
9秒前
老郭发布了新的文献求助10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
一一应助科研通管家采纳,获得10
10秒前
陈昕炜发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
标致秋尽关注了科研通微信公众号
14秒前
hh完成签到,获得积分10
15秒前
16秒前
JEFF发布了新的文献求助10
17秒前
英俊的铭应助陈昕炜采纳,获得30
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
18秒前
大模型应助呆呆采纳,获得10
20秒前
20秒前
babao发布了新的文献求助10
21秒前
23秒前
26秒前
猪猪hero应助星海采纳,获得10
27秒前
香蕉觅云应助雨衣采纳,获得10
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870749
求助须知:如何正确求助?哪些是违规求助? 3412885
关于积分的说明 10681633
捐赠科研通 3137284
什么是DOI,文献DOI怎么找? 1730852
邀请新用户注册赠送积分活动 834413
科研通“疑难数据库(出版商)”最低求助积分说明 781154