数学
矩阵多项式
多项式的
多项式矩阵
特征向量
域代数上的
多项式根的性质
线性代数
单变量
应用数学
矩阵的特征分解
多线性映射
纯数学
数学分析
多元统计
物理
统计
量子力学
几何学
作者
Jeroen Vanderstukken,Lieven De Lathauwer
摘要
We propose a multilinear algebra framework to solve systems of polynomial equations with simple roots. We translate connections between univariate polynomial root-finding, eigenvalue decompositions, and harmonic retrieval to their higher-order counterparts: a canonical polyadic decomposition (CPD) that exploits shift invariance structures in the null space of the Macaulay matrix reveals the roots of the polynomial system. The new framework allows us to use numerical CPD algorithms for solving systems of polynomial equations. For the same degree of the Macaulay matrix as in numerical polynomial algebra/polynomial numerical linear algebra, the CPD is interpreted as the joint eigenvalue decomposition of the multiplication tables. In our approach the degree can also be lower. Affine roots and roots at infinity can be handled in the same way. With minor modifications, the technique can be used to estimate approximate roots of overconstrained systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI