Deep Learning-Based Image Conversion Improves the Reproducibility of Computed Tomography Radiomics Features

再现性 无线电技术 特征(语言学) 一致相关系数 人工智能 基本事实 模式识别(心理学) 成像体模 计算机科学 残余物 计算机断层摄影术 放射科 核医学 医学 数学 统计 算法 语言学 哲学
作者
Seul Bi Lee,Yeon Jin Cho,Yong Woo Hong,Dawun Jeong,Jina Lee,Soohyun Kim,Seung–Hyun Lee,Young Hun Choi
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:57 (5): 308-317 被引量:16
标识
DOI:10.1097/rli.0000000000000839
摘要

This study aimed to evaluate the usefulness of deep learning-based image conversion to improve the reproducibility of computed tomography (CT) radiomics features.This study was conducted using an abdominal phantom with liver nodules. We developed an image conversion algorithm using a residual feature aggregation network to reproduce radiomics features with CT images under various CT protocols and reconstruction kernels. External validation was performed using images from different scanners, consisting of 8 different protocols. To evaluate the variability of radiomics features, regions of interest (ROIs) were drawn by targeting the liver parenchyma, vessels, paraspinal area, and liver nodules. We extracted 18 first-order, 68 second-order, and 688 wavelet radiomics features. Measurement variability was assessed using the concordance correlation coefficient (CCC), compared with the ground-truth image.In the ROI-based analysis, there was an 83.3% improvement of CCC (80/96; 4 ROIs with 3 categories of radiomics features and 8 protocols) in synthetic images compared with the original images. Among them, the 56 CCC pairs showed a significant increase after image synthesis. In the radiomics feature-based analysis, 62.0% (3838 of 6192; 774 radiomics features with 8 protocols) features showed increased CCC after image synthesis, and a significant increase was noted in 26.9% (1663 of 6192) features. In particular, the first-order feature (79.9%, 115/144) showed better improvement in terms of the reproducibility of radiomics feature than the second-order (59.9%, 326/544) or wavelet feature (61.7%, 3397/5504).Our study demonstrated that a deep learning model for image conversion can improve the reproducibility of radiomics features across various CT protocols, reconstruction kernels, and CT scanners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助专注芹采纳,获得10
2秒前
sanxing发布了新的文献求助10
3秒前
check003完成签到,获得积分10
4秒前
九五式自动步枪完成签到 ,获得积分10
4秒前
科研通AI2S应助赤墨采纳,获得30
4秒前
曲书文完成签到,获得积分10
6秒前
6秒前
12秒前
天天快乐应助Nashe采纳,获得10
13秒前
13秒前
14秒前
强风吹拂发布了新的文献求助10
15秒前
18秒前
赤墨发布了新的文献求助30
18秒前
liqian应助zy采纳,获得10
19秒前
livr发布了新的文献求助10
19秒前
11发布了新的文献求助30
19秒前
22秒前
wtt0109发布了新的文献求助10
23秒前
Nashe发布了新的文献求助10
26秒前
26秒前
26秒前
27秒前
NexusExplorer应助11采纳,获得30
28秒前
李健应助于于于采纳,获得10
29秒前
wtt0109完成签到,获得积分10
29秒前
30秒前
乐乐应助evak采纳,获得10
32秒前
33秒前
34秒前
强风吹拂完成签到,获得积分20
34秒前
Lucky完成签到 ,获得积分10
34秒前
华中科技大学完成签到,获得积分10
35秒前
Desole发布了新的文献求助10
37秒前
37秒前
38秒前
动漫大师发布了新的文献求助20
38秒前
41秒前
水晶茶杯发布了新的文献求助40
41秒前
41秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Routledge Handbook of Language and Intercultural Communication 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826719
求助须知:如何正确求助?哪些是违规求助? 3369009
关于积分的说明 10453805
捐赠科研通 3088598
什么是DOI,文献DOI怎么找? 1699232
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770157