Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI

医学 结直肠癌 峰度 放化疗 磁共振成像 磁共振弥散成像 完全响应 内科学 新辅助治疗 放射科 癌症 放射治疗 乳腺癌 化疗 统计 数学
作者
Xiaoyan Zhang,Lin Wang,Haitao Zhu,Zhongwu Li,Meng Ye,Xiao-Ting Li,Yan‐Jie Shi,Huici Zhu,Ying‐Shi Sun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 56-64 被引量:98
标识
DOI:10.1148/radiol.2020190936
摘要

Background Preoperative response evaluation with neoadjuvant chemoradiotherapy remains a challenge in the setting of locally advanced rectal cancer. Recently, deep learning (DL) has been widely used in tumor diagnosis and treatment and has produced exciting results. Purpose To develop and validate a DL method to predict response of rectal cancer to neoadjuvant therapy based on diffusion kurtosis and T2-weighted MRI. Materials and Methods In this prospective study, participants with locally advanced rectal adenocarcinoma (≥cT3 or N+) proved at histopathology and baseline MRI who were scheduled to undergo preoperative chemoradiotherapy were enrolled from October 2015 to December 2017 and were chronologically divided into 308 training samples and 104 test samples. DL models were constructed primarily to predict pathologic complete response (pCR) and secondarily to assess tumor regression grade (TRG) (TRG0 and TRG1 vs TRG2 and TRG3) and T downstaging. Other analysis included comparisons of diffusion kurtosis MRI parameters and subjective evaluation by radiologists. Results A total of 383 participants (mean age, 57 years ± 10 [standard deviation]; 229 men) were evaluated (290 in the training cohort, 93 in the test cohort). The area under the receiver operating characteristic curve (AUC) was 0.99 for the pCR model in the test cohort, which was higher than the AUC for raters 1 and 2 (0.66 and 0.72, respectively; P < .001 for both). AUC for the DL model was 0.70 for TRG and 0.79 for T downstaging. AUC for pCR with the DL model was better than AUC for the best-performing diffusion kurtosis MRI parameters alone (diffusion coefficient in normal diffusion after correcting the non-Gaussian effect [Dapp value] before neoadjuvant therapy, AUC = 0.76). Subjective evaluation by radiologists yielded a higher error rate (1 − accuracy) (25 of 93 [26.9%] and 23 of 93 [24.8%] for raters 1 and 2, respectively) in predicting pCR than did evaluation with the DL model (two of 93 [2.2%]); the radiologists achieved a lower error rate (12 of 93 [12.9%] and 13 of 93 [14.0%] for raters 1 and 2, respectively) when assisted by the DL model. Conclusion A deep learning model based on diffusion kurtosis MRI showed good performance for predicting pathologic complete response and aided the radiologist in assessing response of locally advanced rectal cancer after neoadjuvant chemoradiotherapy. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Koh in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kygwrw完成签到,获得积分10
刚刚
hui发布了新的文献求助10
刚刚
jackmilton发布了新的文献求助10
刚刚
value发布了新的文献求助30
1秒前
徐蹇发布了新的文献求助10
1秒前
1秒前
Twilight发布了新的文献求助10
2秒前
2秒前
yi完成签到,获得积分10
3秒前
yy发布了新的文献求助10
4秒前
Krainy77发布了新的文献求助10
4秒前
4秒前
5秒前
安德鲁发布了新的文献求助10
5秒前
RRR发布了新的文献求助30
6秒前
香蕉觅云应助木木采纳,获得10
6秒前
犹豫豆芽完成签到 ,获得积分10
6秒前
赘婿应助hui采纳,获得10
7秒前
7秒前
兔子发布了新的文献求助10
8秒前
9秒前
9秒前
阳光的衫发布了新的文献求助10
10秒前
10秒前
Comet发布了新的文献求助10
10秒前
10秒前
Twilight完成签到,获得积分20
10秒前
11秒前
烟花应助徐蹇采纳,获得10
11秒前
汉堡包应助徐蹇采纳,获得10
11秒前
彭于晏应助徐蹇采纳,获得10
12秒前
12秒前
万能图书馆应助崔大冠采纳,获得10
13秒前
watercolding发布了新的文献求助10
13秒前
童童发布了新的文献求助10
13秒前
科研通AI6应助巫马垣采纳,获得10
14秒前
14秒前
14秒前
Shawn发布了新的文献求助10
14秒前
yy发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263504
求助须知:如何正确求助?哪些是违规求助? 4424042
关于积分的说明 13771651
捐赠科研通 4299063
什么是DOI,文献DOI怎么找? 2358884
邀请新用户注册赠送积分活动 1355136
关于科研通互助平台的介绍 1316351