Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI

医学 结直肠癌 峰度 放化疗 磁共振成像 磁共振弥散成像 完全响应 内科学 新辅助治疗 放射科 癌症 放射治疗 乳腺癌 化疗 统计 数学
作者
Xiaoyan Zhang,Lin Wang,Haitao Zhu,Zhongwu Li,Meng Ye,Xiao-Ting Li,Yan‐Jie Shi,Huici Zhu,Ying‐Shi Sun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 56-64 被引量:84
标识
DOI:10.1148/radiol.2020190936
摘要

Background Preoperative response evaluation with neoadjuvant chemoradiotherapy remains a challenge in the setting of locally advanced rectal cancer. Recently, deep learning (DL) has been widely used in tumor diagnosis and treatment and has produced exciting results. Purpose To develop and validate a DL method to predict response of rectal cancer to neoadjuvant therapy based on diffusion kurtosis and T2-weighted MRI. Materials and Methods In this prospective study, participants with locally advanced rectal adenocarcinoma (≥cT3 or N+) proved at histopathology and baseline MRI who were scheduled to undergo preoperative chemoradiotherapy were enrolled from October 2015 to December 2017 and were chronologically divided into 308 training samples and 104 test samples. DL models were constructed primarily to predict pathologic complete response (pCR) and secondarily to assess tumor regression grade (TRG) (TRG0 and TRG1 vs TRG2 and TRG3) and T downstaging. Other analysis included comparisons of diffusion kurtosis MRI parameters and subjective evaluation by radiologists. Results A total of 383 participants (mean age, 57 years ± 10 [standard deviation]; 229 men) were evaluated (290 in the training cohort, 93 in the test cohort). The area under the receiver operating characteristic curve (AUC) was 0.99 for the pCR model in the test cohort, which was higher than the AUC for raters 1 and 2 (0.66 and 0.72, respectively; P < .001 for both). AUC for the DL model was 0.70 for TRG and 0.79 for T downstaging. AUC for pCR with the DL model was better than AUC for the best-performing diffusion kurtosis MRI parameters alone (diffusion coefficient in normal diffusion after correcting the non-Gaussian effect [Dapp value] before neoadjuvant therapy, AUC = 0.76). Subjective evaluation by radiologists yielded a higher error rate (1 − accuracy) (25 of 93 [26.9%] and 23 of 93 [24.8%] for raters 1 and 2, respectively) in predicting pCR than did evaluation with the DL model (two of 93 [2.2%]); the radiologists achieved a lower error rate (12 of 93 [12.9%] and 13 of 93 [14.0%] for raters 1 and 2, respectively) when assisted by the DL model. Conclusion A deep learning model based on diffusion kurtosis MRI showed good performance for predicting pathologic complete response and aided the radiologist in assessing response of locally advanced rectal cancer after neoadjuvant chemoradiotherapy. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Koh in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助美好的元珊采纳,获得10
1秒前
天天快乐应助美好的元珊采纳,获得10
1秒前
xu发布了新的文献求助10
3秒前
Noha完成签到,获得积分20
4秒前
5秒前
6秒前
许红祥完成签到,获得积分10
6秒前
无花果应助慈祥的鱼采纳,获得10
7秒前
7秒前
大模型应助顺顺采纳,获得10
7秒前
8秒前
8秒前
深情的大碗完成签到,获得积分10
8秒前
wang发布了新的文献求助10
9秒前
SYLH应助sb采纳,获得10
10秒前
善良的凝荷完成签到,获得积分10
10秒前
冷静妙海完成签到 ,获得积分10
10秒前
1111发布了新的文献求助10
11秒前
ry发布了新的文献求助10
12秒前
12秒前
cp1690完成签到,获得积分10
13秒前
13秒前
斯文败类应助未何采纳,获得10
14秒前
爱撒娇的紫南完成签到 ,获得积分10
14秒前
14秒前
充电宝应助玥越采纳,获得10
14秒前
我是老大应助清爽忆山采纳,获得10
15秒前
GaryW完成签到,获得积分10
15秒前
CAIJING完成签到,获得积分10
15秒前
16秒前
16秒前
慕青应助alaxs采纳,获得10
17秒前
17秒前
GaryW发布了新的文献求助10
18秒前
专注灵凡发布了新的文献求助10
18秒前
11完成签到,获得积分10
19秒前
包容大象发布了新的文献求助10
20秒前
21秒前
Ava应助林药师采纳,获得10
22秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829755
求助须知:如何正确求助?哪些是违规求助? 3372406
关于积分的说明 10471951
捐赠科研通 3091946
什么是DOI,文献DOI怎么找? 1701575
邀请新用户注册赠送积分活动 818468
科研通“疑难数据库(出版商)”最低求助积分说明 770905