Interesting molecule adsorption strategy induced energy band tuning: Boosts 43 times photocatalytic Water splitting ability for commercial TiO2

光催化 吸附 带隙 吸收(声学) 材料科学 电子 光催化分解水 分子 光化学 化学物理 分解水 光电子学 化学 纳米技术 催化作用 物理化学 有机化学 物理 复合材料 量子力学
作者
Jindou Hu,Jing Xie,Weiping Jia,Su Zhang,Shiqiang Wang,Kun Wang,Yali Cao
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:268: 118753-118753 被引量:17
标识
DOI:10.1016/j.apcatb.2020.118753
摘要

An interesting and ultra-simple organic molecule adsorption strategy was used to simultaneously increase the reduction ability of photogenerated electrons and light absorption of commercial TiO 2 . Experimental and DFT theoretical calculations verified that the adsorbed organics can provide electrons for TiO 2 , the pre-provided electrons enable the conduction band bend upwards, thus enhance the reduction ability of photogenerated electrons and improve the light absorption ability of TiO 2 . So the resulted photocatalytic performance increased by 43 times. • The ultra-simple adsorption strategy increases photocatalytic performance by 43 times. • The interesting strategy can simultaneously narrow band gap and increase conduction band position. • The electron supply mechanism is verified by experimental and DFT caculation results. The photogenerated electron reduction ability and light absorption capacity of photocatalysts are crucial to their photocatalytic hydrogen evolution performance. However, rising the conduction band position will widen the band gap and result in a decrease in light absorption efficiency. Herein, an ultra-simple and novel organic molecule adsorption strategy was carried out on the surface of commercial TiO 2 to simultaneously increase the reduction ability of photogenerated electrons and light absorption of commercial TiO 2 . Then the contradiction mentioned above was perfectly solved by such an interesting strategy. The resultant ethylenediamine adsorbed TiO 2 exhibits excellent photocatalytic hydrogen evolution rate, which is 43 times higher than that of commercial TiO 2 . Effectively, the experimental results and DFT theoretical calculations verified that the adsorbed organic molecule can provide electrons for TiO 2 . The provided electrons enable the conduction band bend upwards, thus enhance the reduction ability of photogenerated electrons and improve the light absorption ability of TiO 2 . More interestingly, the provided electrons can also promote the separation efficiency of photogenerated carriers by weakening the attraction of photogenerated holes to photogenerated electrons. Therefore, the efficiency of photocatalytic hydrogen production has been greatly improved. This work opens a new research field to enhance the photocatalytic performance by adsorbing various designed organics on the surface of photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
湾仔完成签到,获得积分10
4秒前
6秒前
6秒前
学术小白完成签到,获得积分20
7秒前
湾仔发布了新的文献求助10
10秒前
小周周发布了新的文献求助10
11秒前
15秒前
17秒前
01发布了新的文献求助10
17秒前
个性的紫菜应助宫藏鸟采纳,获得10
19秒前
杀出个黎明举报吴昊求助涉嫌违规
19秒前
20秒前
小熊发布了新的文献求助10
21秒前
21秒前
lalallaal发布了新的文献求助10
22秒前
人群是那么像羊群完成签到 ,获得积分10
22秒前
byelue发布了新的文献求助10
22秒前
传奇3应助Alpha不吃小蛋糕采纳,获得10
24秒前
25秒前
难难难发布了新的文献求助30
25秒前
舒心傲蕾完成签到,获得积分20
26秒前
lalallaal完成签到,获得积分20
28秒前
29秒前
王尚敏发布了新的文献求助30
29秒前
舒心傲蕾发布了新的文献求助10
30秒前
语蝶完成签到,获得积分10
31秒前
酷波er应助潘趣酒采纳,获得10
31秒前
敏敏完成签到,获得积分10
32秒前
byelue完成签到,获得积分10
33秒前
sptyzl完成签到 ,获得积分10
34秒前
35秒前
35秒前
vampire完成签到,获得积分20
35秒前
语蝶发布了新的文献求助10
36秒前
田様应助巩琦采纳,获得10
36秒前
Owen应助Le采纳,获得10
40秒前
41秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
india-NATO Dialogue: Addressing International Security and Regional Challenges 400
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2470431
求助须知:如何正确求助?哪些是违规求助? 2137312
关于积分的说明 5445791
捐赠科研通 1861528
什么是DOI,文献DOI怎么找? 925765
版权声明 562721
科研通“疑难数据库(出版商)”最低求助积分说明 495218