Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors

转录组 多发性骨髓瘤 单细胞分析 计算生物学 癌症研究 药品 人口 生物 基因表达 细胞 基因 基因表达谱 生物信息学 遗传学 医学 免疫学 药理学 环境卫生
作者
Amit Kumar Mitra,Ujjal Kumar Mukherjee,T. Harding,Jason S.C. Jang,Holly A.F. Stessman,Y. Li,Alexej Abyzov,Jin Jen,Sanjay Kumar,S. Vincent Rajkumar,Brian G Van Ness
出处
期刊:Leukemia [Springer Nature]
卷期号:30 (5): 1094-1102 被引量:59
标识
DOI:10.1038/leu.2015.361
摘要

Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that have a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Although genome profiling studies have demonstrated heterogeneity in subclonal architecture that may ultimately lead to relapse, a gene expression-based prediction program that can identify, distinguish and quantify drug response in sub-populations within a bulk population of myeloma cells is lacking. In this study, we performed targeted transcriptome analysis on 528 pre-treatment single cells from 11 myeloma cell lines and 418 single cells from 8 drug-naive MM patients, followed by intensive bioinformatics and statistical analysis for prediction of proteasome inhibitor sensitivity in individual cells. Using our previously reported drug response gene expression profile signature at the single-cell level, we developed an R Statistical analysis package available at https://github.com/bvnlabSCATTome, SCATTome (single-cell analysis of targeted transcriptome), that restructures the data obtained from Fluidigm single-cell quantitative real-time-PCR analysis run, filters missing data, performs scaling of filtered data, builds classification models and predicts drug response of individual cells based on targeted transcriptome using an assortment of machine learning methods. Application of SCATT should contribute to clinically relevant analysis of intratumor heterogeneity, and better inform drug choices based on subclonal cellular responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flow完成签到 ,获得积分10
3秒前
5秒前
xx完成签到 ,获得积分10
7秒前
10秒前
muzixin完成签到,获得积分10
12秒前
科研通AI5应助王景采纳,获得10
14秒前
小马甲应助负责的听云采纳,获得10
14秒前
爆米花应助Jack采纳,获得10
17秒前
搜集达人应助风趣的黑夜采纳,获得10
18秒前
Jasper应助周浩宇采纳,获得10
18秒前
橘子树完成签到 ,获得积分10
19秒前
柏事完成签到 ,获得积分10
20秒前
冰魂应助酷炫怀莲采纳,获得10
20秒前
dragonking520发布了新的文献求助10
21秒前
22秒前
人间忽晚完成签到,获得积分10
23秒前
wanci应助Zz采纳,获得10
24秒前
24秒前
25秒前
王景发布了新的文献求助10
27秒前
oxs完成签到 ,获得积分10
27秒前
彭于晏应助紧张的芷采纳,获得10
27秒前
Jack发布了新的文献求助10
30秒前
30秒前
30秒前
嗨波完成签到,获得积分10
30秒前
31秒前
上官若男应助Bo采纳,获得10
31秒前
dr1nk发布了新的文献求助10
33秒前
bkagyin应助sunzhuxi采纳,获得10
34秒前
SciGPT应助嘟嘟图图采纳,获得10
34秒前
科研通AI5应助嗨波采纳,获得10
35秒前
35秒前
35秒前
36秒前
fjh发布了新的文献求助10
37秒前
37秒前
Hello应助风笛采纳,获得20
38秒前
rmbsLHC发布了新的文献求助10
40秒前
小王完成签到 ,获得积分10
41秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Multiscale Modeling Approaches for Composites 360
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
International standard-setting alliance and its possible negative effect on consumer's technology acceptance and technology progress 200
The acute effects of performing drop jumps of different intensities on concentric squat strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824750
求助须知:如何正确求助?哪些是违规求助? 3367053
关于积分的说明 10444297
捐赠科研通 3086384
什么是DOI,文献DOI怎么找? 1697952
邀请新用户注册赠送积分活动 816624
科研通“疑难数据库(出版商)”最低求助积分说明 769840