Diagnosing lagophthalmos using artificial intelligence

兔眼 医学 过度拟合 失明 人工智能 外科 计算机科学 人工神经网络 验光服务 眼睑
作者
Leonard Knoedler,Michael Alfertshofer,Sumanto Simon,Lukas Prantl,Andreas Kehrer,Cosima C. Hoch,Samuel Knoedler,Philipp Lamby
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-49006-3
摘要

Lagophthalmos is the incomplete closure of the eyelids posing the risk of corneal ulceration and blindness. Lagophthalmos is a common symptom of various pathologies. We aimed to program a convolutional neural network to automatize lagophthalmos diagnosis. From June 2019 to May 2021, prospective data acquisition was performed on 30 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany (IRB reference number: 20-2081-101). In addition, comparative data were gathered from 10 healthy patients as the control group. The training set comprised 826 images, while the validation and testing sets consisted of 91 patient images each. Validation accuracy was 97.8% over the span of 64 epochs. The model was trained for 17.3 min. For training and validation, an average loss of 0.304 and 0.358 and a final loss of 0.276 and 0.157 were noted. The testing accuracy was observed to be 93.41% with a loss of 0.221. This study proposes a novel application for rapid and reliable lagophthalmos diagnosis. Our CNN-based approach combines effective anti-overfitting strategies, short training times, and high accuracy levels. Ultimately, this tool carries high translational potential to facilitate the physician's workflow and improve overall lagophthalmos patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助123456采纳,获得10
刚刚
x笑一完成签到,获得积分10
2秒前
afive完成签到,获得积分10
2秒前
蜡笔小新完成签到,获得积分10
2秒前
2秒前
2秒前
朴素的清完成签到 ,获得积分10
3秒前
sdl发布了新的文献求助10
4秒前
4秒前
4秒前
mgg完成签到,获得积分10
4秒前
帅气的冥王星完成签到 ,获得积分10
5秒前
5秒前
Akim应助HLT采纳,获得10
5秒前
Sawyer完成签到,获得积分20
6秒前
科研通AI5应助chai采纳,获得30
6秒前
丘比特应助康舟采纳,获得10
6秒前
科研通AI5应助曾经的孤萍采纳,获得10
6秒前
俏皮语海发布了新的文献求助10
7秒前
达利完成签到,获得积分10
7秒前
君莫笑发布了新的文献求助10
8秒前
8秒前
隐形不言发布了新的文献求助10
8秒前
fireking_sid发布了新的文献求助10
8秒前
shanage应助yixuebing采纳,获得10
9秒前
iiiau完成签到,获得积分10
10秒前
思源应助寒冷尔蝶采纳,获得10
10秒前
10秒前
10秒前
Sunshine完成签到,获得积分10
11秒前
Fu完成签到,获得积分10
11秒前
11秒前
11秒前
gyh发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助田yg采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
《续天台宗全书•史传1--天台大师传注释类》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838908
求助须知:如何正确求助?哪些是违规求助? 3381351
关于积分的说明 10517883
捐赠科研通 3100836
什么是DOI,文献DOI怎么找? 1707788
邀请新用户注册赠送积分活动 821920
科研通“疑难数据库(出版商)”最低求助积分说明 773048