生物
黑色素瘤
免疫疗法
癌症研究
免疫检查点
转录组
TCF4型
基因调控网络
肿瘤微环境
免疫系统
计算生物学
免疫学
基因
遗传学
发起人
基因表达
作者
Joanna Poźniak,Dennis Pedri,Ewout Landeloos,Yannick Van Herck,Asier Antoranz,Lukas Vanwynsberghe,Ada Nowosad,Niccolò Roda,Samira Makhzami,Greet Bervoets,Lucas F. Maciel,Carlos Ariel Pulido-Vicuña,Lotte Pollaris,Ruth Seurinck,Fang Zhao,Karine Flem‐Karlsen,William Damsky,Limin Chen,Despoina Karagianni,Sonia Cinque
出处
期刊:Cell
[Cell Press]
日期:2024-01-01
卷期号:187 (1): 166-183.e25
被引量:53
标识
DOI:10.1016/j.cell.2023.11.037
摘要
To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.
科研通智能强力驱动
Strongly Powered by AbleSci AI