Active Inference and Intentional Behavior

推论 人工智能 心理学 计算机科学 机器学习 认知科学
作者
Karl Friston,Tommaso Salvatori,Takuya Isomura,Alexander Tschantz,Alex Kiefer,Tim Verbelen,Magnus Koudahl,Aswin Paul,Thomas Parr,Adeel Razi,Brett J. Kagan,Christopher L. Buckley,Maxwell J. D. Ramstead
出处
期刊:Neural Computation [The MIT Press]
卷期号:: 1-35 被引量:2
标识
DOI:10.1162/neco_a_01738
摘要

Recent advances in theoretical biology suggest that key definitions of basal cognition and sentient behavior may arise as emergent properties of in vitro cell cultures and neuronal networks. Such neuronal networks reorganize activity to demonstrate structured behaviors when embodied in structured information landscapes. In this article, we characterize this kind of self-organization through the lens of the free energy principle, that is, as self-evidencing. We do this by first discussing the definitions of reactive and sentient behavior in the setting of active inference, which describes the behavior of agents that model the consequences of their actions. We then introduce a formal account of intentional behavior that describes agents as driven by a preferred end point or goal in latent state-spaces. We then investigate these forms of (reactive, sentient, and intentional) behavior using simulations. First, we simulate the in vitro experiments, in which neuronal cultures modulated activity to improve gameplay in a simplified version of Pong by implementing nested, free energy minimizing processes. The simulations are then used to deconstruct the ensuing predictive behavior, leading to the distinction between merely reactive, sentient, and intentional behavior with the latter formalized in terms of inductive inference. This distinction is further studied using simple machine learning benchmarks (navigation in a grid world and the Tower of Hanoi problem) that show how quickly and efficiently adaptive behavior emerges under an inductive form of active inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷途灯光完成签到 ,获得积分10
2秒前
WTT完成签到,获得积分10
4秒前
小巧的柏柳完成签到 ,获得积分10
5秒前
于鱼完成签到,获得积分10
5秒前
香蕉觅云应助hk采纳,获得10
6秒前
11秒前
11秒前
小马甲应助海贼学术采纳,获得10
12秒前
yi一一完成签到,获得积分10
12秒前
搞科研的小李同学完成签到 ,获得积分10
13秒前
包容诗槐完成签到,获得积分10
13秒前
ameng_xu发布了新的文献求助10
13秒前
慕青应助小小采纳,获得10
14秒前
14秒前
ych666关注了科研通微信公众号
15秒前
自信幻灵应助风中的丝袜采纳,获得10
15秒前
小欧文发布了新的文献求助10
16秒前
斯文败类应助Carlos采纳,获得10
17秒前
fwz发布了新的文献求助10
17秒前
...完成签到,获得积分10
19秒前
小满发布了新的文献求助10
19秒前
哇哈哈完成签到,获得积分10
20秒前
Pzuzu完成签到 ,获得积分10
20秒前
23秒前
和敬清寂发布了新的文献求助10
25秒前
25秒前
CipherSage应助小满采纳,获得10
27秒前
27秒前
28秒前
覆覆盆子发布了新的文献求助10
28秒前
袁科研完成签到,获得积分10
29秒前
lunar发布了新的文献求助20
29秒前
31秒前
所所应助灵巧大地采纳,获得10
31秒前
31秒前
wanci应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
31秒前
31秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903658
求助须知:如何正确求助?哪些是违规求助? 3448463
关于积分的说明 10853161
捐赠科研通 3173896
什么是DOI,文献DOI怎么找? 1753644
邀请新用户注册赠送积分活动 847798
科研通“疑难数据库(出版商)”最低求助积分说明 790473