肺炎克雷伯菌
基因组
推论
工作流程
数据库
计算生物学
抗生素耐药性
基因组学
生物
基因
计算机科学
遗传学
细菌
人工智能
大肠杆菌
作者
Pornsawan Cholsaktrakool,Kornthara Kawang,Nicha Sangpiromapichai,Pannaporn Thongsuk,Songtham Anuntakarun,Pattapon Kunadirek,Natthaya Chuaypen,Sumanee Nilgate,Naris Kueakulpattana,Ubolrat Rirerm,Tanittha Chatsuwan,Elita Jauneikaite,Frances Davies,Ploy N. Pratanwanich,Sira Sriswasdi,Voraphoj Nilaratanakul
出处
期刊:iScience
[Cell Press]
日期:2025-06-20
卷期号:28 (8): 112962-112962
标识
DOI:10.1016/j.isci.2025.112962
摘要
This study focuses on the rapid detection of antimicrobial resistance (AMR) in Klebsiella pneumoniae. The "Align-Search-Infer" pipeline aligned query sequences from 24 urine samples against a curated genome database of 40 Klebsiella isolates, searched for the best matches, and inferred their antimicrobial susceptibility. Carbapenem resistance inference achieved 77.3% accuracy (95%CI: 59.8-94.8%) within 10 min using whole-genome matching, and 85.7% accuracy (95%CI: 70.7-100.0%) within 1 h using plasmid matching - both surpassing the 54.2% accuracy (95%CI: 34.2-74.1%) of AMR gene detection at 6 h. The proposed method requires less bacterial DNA and is suitable for low-load clinical samples. Our small local database performed comparably to large public databases. This study supports the integration of pathogen-specific genome databases into clinical workflows to enable rapid and accurate antimicrobial susceptibility prediction. Further research is needed to validate and refine the method using larger genomic-phenotypic datasets across diverse pathogens and sample types.
科研通智能强力驱动
Strongly Powered by AbleSci AI