清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Validation of a Cell-Free DNA Fragmentomics–Based Model for Early Detection of Pancreatic Cancer

医学 胰腺癌 癌症 胎儿游离DNA 肿瘤科 癌症研究 计算生物学 内科学 遗传学 生物 怀孕 胎儿 产前诊断
作者
Lingdi Yin,Cheng Cao,Jianzhen Lin,Zheng Wang,Yunpeng Peng,Kai Zhang,Cheng Xu,Ruowei Yang,Dongqin Zhu,Fufeng Wang,Shuang Chang,Hua Bao,Shanshan Yang,Ningyou Li,Xue Wu,Yang Shao,Zheng Wu,Shuai Wu,Ning Pu,Zhihang Xu
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
被引量:2
标识
DOI:10.1200/jco.24.00287
摘要

Pancreatic ductal adenocarcinoma (PDAC), known for its high fatality rate, is often diagnosed in its advanced stages where surgical options are not viable. This highlights the critical need for innovative and effective early detection techniques. This study focuses on the potential of cell-free DNA (cfDNA) fragmentomics integrating advanced machine learning to identify early-stage PDAC with high accuracy. Our study included a broad cohort of 1,167 participants, from which plasma was collected and subjected to shallow whole-genome sequencing. After rigorous quality assessments, 166 individuals diagnosed with PDAC and 167 healthy participants were in the training cohort, whereas the validation cohort consisted of 112 patients with PDAC and 111 healthy individuals. A separate group of 67 individuals with nonmalignant pancreatic cysts was also included to validate the model's accuracy. Finally, two additional external validation cohorts and one additional independent early-stage data set were included to evaluate the robustness of model. Our analysis used fragmentomic profiling, integrating copy-number variations, fragment size, mutational signatures, and methylation patterns analyzed using machine learning. The model demonstrated remarkable accuracy in distinguishing patients with PDAC from controls, with an AUC of 0.992 in the training data set and 0.987 in the validation data set. At a cutoff of 0.52, the training set reached a sensitivity of 93.4% and a specificity of 95.2%. In the validation data set, the sensitivity was 97.3% with a specificity of 92.8%, while the external data set demonstrated a sensitivity of 90.91% and a specificity of 94.5%. This study underscores the effectiveness of using cfDNA fragmentomics and machine learning for early detection of PDAC. Our approach promises significant potential in reducing PDAC mortalities through early intervention and could serve as a breakthrough in oncologic diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助望远Arena采纳,获得10
12秒前
Becky完成签到 ,获得积分10
49秒前
50秒前
星辰大海应助望远Arena采纳,获得30
51秒前
juan完成签到 ,获得积分10
54秒前
望远Arena发布了新的文献求助10
56秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
失眠问晴发布了新的文献求助30
1分钟前
席成风发布了新的文献求助10
1分钟前
失眠问晴完成签到,获得积分10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
GPTea应助科研通管家采纳,获得30
1分钟前
LOST完成签到 ,获得积分10
1分钟前
孙老师完成签到 ,获得积分10
1分钟前
Gydl完成签到,获得积分10
1分钟前
蔺天宇完成签到,获得积分10
2分钟前
如意竺完成签到,获得积分10
2分钟前
3分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
愉快的犀牛完成签到 ,获得积分10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI5应助shamiones采纳,获得10
3分钟前
3分钟前
望远Arena发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
姚老表完成签到,获得积分10
4分钟前
刘辰完成签到 ,获得积分10
4分钟前
华仔应助闪闪翼采纳,获得10
4分钟前
4分钟前
闪闪翼发布了新的文献求助10
5分钟前
望远Arena发布了新的文献求助10
5分钟前
6分钟前
聪慧的从雪完成签到 ,获得积分10
6分钟前
唐诗阅完成签到,获得积分10
6分钟前
玩命蛋挞完成签到,获得积分10
7分钟前
Lazure完成签到 ,获得积分10
7分钟前
nbtzy完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5007937
求助须知:如何正确求助?哪些是违规求助? 4250655
关于积分的说明 13243559
捐赠科研通 4051281
什么是DOI,文献DOI怎么找? 2216254
邀请新用户注册赠送积分活动 1226099
关于科研通互助平台的介绍 1147427