亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of a Cell-Free DNA Fragmentomics–Based Model for Early Detection of Pancreatic Cancer

医学 胰腺癌 癌症 胎儿游离DNA 肿瘤科 癌症研究 计算生物学 内科学 遗传学 生物 胎儿 产前诊断 怀孕
作者
Lingdi Yin,Cheng Cao,Jianzhen Lin,Zheng Wang,Yunpeng Peng,Kai Zhang,Cheng Xu,Ruowei Yang,Dongqin Zhu,Fufeng Wang,Shuang Chang,Hua Bao,Shanshan Yang,Ningyou Li,Xue Wu,Yang Shao,Zheng Wu,Shuai Wu,Ning Pu,Zhihang Xu
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1200/jco.24.00287
摘要

Pancreatic ductal adenocarcinoma (PDAC), known for its high fatality rate, is often diagnosed in its advanced stages where surgical options are not viable. This highlights the critical need for innovative and effective early detection techniques. This study focuses on the potential of cell-free DNA (cfDNA) fragmentomics integrating advanced machine learning to identify early-stage PDAC with high accuracy. Our study included a broad cohort of 1,167 participants, from which plasma was collected and subjected to shallow whole-genome sequencing. After rigorous quality assessments, 166 individuals diagnosed with PDAC and 167 healthy participants were in the training cohort, whereas the validation cohort consisted of 112 patients with PDAC and 111 healthy individuals. A separate group of 67 individuals with nonmalignant pancreatic cysts was also included to validate the model's accuracy. Finally, two additional external validation cohorts and one additional independent early-stage data set were included to evaluate the robustness of model. Our analysis used fragmentomic profiling, integrating copy-number variations, fragment size, mutational signatures, and methylation patterns analyzed using machine learning. The model demonstrated remarkable accuracy in distinguishing patients with PDAC from controls, with an AUC of 0.992 in the training data set and 0.987 in the validation data set. At a cutoff of 0.52, the training set reached a sensitivity of 93.4% and a specificity of 95.2%. In the validation data set, the sensitivity was 97.3% with a specificity of 92.8%, while the external data set demonstrated a sensitivity of 90.91% and a specificity of 94.5%. This study underscores the effectiveness of using cfDNA fragmentomics and machine learning for early detection of PDAC. Our approach promises significant potential in reducing PDAC mortalities through early intervention and could serve as a breakthrough in oncologic diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LukeLion发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
16秒前
44秒前
59秒前
深情安青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
LukeLion发布了新的文献求助10
1分钟前
1分钟前
lee完成签到 ,获得积分10
1分钟前
1分钟前
rerekey发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
灯光师发布了新的文献求助10
2分钟前
2分钟前
2分钟前
然463完成签到 ,获得积分10
2分钟前
斯文败类应助灯光师采纳,获得10
2分钟前
Apricot发布了新的文献求助10
2分钟前
科目三应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
酷波er应助爱听歌笑寒采纳,获得10
4分钟前
4分钟前
4分钟前
QQ完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Ms_Galaxea完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
在水一方应助科研通管家采纳,获得10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4261643
求助须知:如何正确求助?哪些是违规求助? 3794621
关于积分的说明 11899308
捐赠科研通 3441725
什么是DOI,文献DOI怎么找? 1888745
邀请新用户注册赠送积分活动 939489
科研通“疑难数据库(出版商)”最低求助积分说明 844525