WOA-BP Based Predicting Daily Production Method of Single Wells in Oilfield

石油工程 生产(经济) 地质学 计算机科学 经济 宏观经济学
作者
Hongtao Hu,Xueying Zhang
标识
DOI:10.1145/3638584.3638616
摘要

The daily production of a single well in an oil field can reflect the changes in oil and water in the reservoir and it is an important basis for formulating single well stimulation measures. However, the factors that affect the daily production of a single well are complex, and there is currently no standard calculation method. In recent years, BP neural networks have been widely used in yield prediction, but they have problems such as slow convergence speed and easy to fall into local optima. In response to the above issues, this paper proposes a backpropagation neural network model WOA-BP based on the whale optimization algorithm. Firstly, the Spearman and Pearson correlation coefficient methods are used to screen feature attributes related to oil production as input parameters of the neural network, with oil production as output parameter; Then, the Whale Optimization Algorithm (WOA) is used to optimize the initial parameters such as learning rate, weight and bias, as well as the number of hidden layer neurons in the BP neural network; Finally, based on the optimized initial network parameters, a single well daily production prediction model is constructed. Train and evaluate the established model using real oilfield data, and compare it with the prediction models of BP, GA-BP, and PSO-BP. The experimental results show that the WOA-BP model has good prediction performance, with a coefficient of determination (R2) of 0.9633 and a mean square error (MSE) of 0.0017. It can effectively predict the daily oil production of a single well and aid with predicting the production of oilfield blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YF是杨芳完成签到 ,获得积分10
1秒前
缥缈宛凝完成签到,获得积分10
2秒前
照相机发布了新的文献求助10
2秒前
ari完成签到 ,获得积分20
3秒前
4秒前
5秒前
5秒前
丘比特应助天天开心采纳,获得30
6秒前
可靠的0发布了新的文献求助10
8秒前
shanika发布了新的文献求助10
9秒前
调皮金连完成签到,获得积分20
10秒前
科研通AI5应助酷炫的背包采纳,获得10
10秒前
bobo发布了新的文献求助10
12秒前
15秒前
大模型应助shanika采纳,获得10
19秒前
CBP完成签到,获得积分10
20秒前
韩涵发布了新的文献求助10
20秒前
大腚疯猪应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
元万天应助科研通管家采纳,获得20
21秒前
22秒前
英姑应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得30
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
弓纪世发布了新的文献求助10
22秒前
可靠的0完成签到,获得积分10
22秒前
bkagyin应助Dxc采纳,获得10
22秒前
生理生化必有一卦完成签到,获得积分10
23秒前
25秒前
遇见飞儿完成签到,获得积分10
26秒前
星辰大海应助照相机采纳,获得10
26秒前
Pepsi完成签到,获得积分10
26秒前
科研通AI5应助cym采纳,获得10
27秒前
27秒前
酷波er应助蘑菇腿采纳,获得10
27秒前
wsff发布了新的文献求助10
30秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800362
求助须知:如何正确求助?哪些是违规求助? 3345637
关于积分的说明 10326218
捐赠科研通 3062073
什么是DOI,文献DOI怎么找? 1680810
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763560