Development and Validation of a Deep Learning Model for Predicting Treatment Response in Patients With Newly Diagnosed Epilepsy

队列 医学 癫痫 接收机工作特性 临床试验 队列研究 物理疗法 内科学 精神科
作者
Haris Hakeem,Wei Feng,Zhibin Chen,Jiun Choong,Martin J. Brodie,Si‐Lei Fong,Kheng Seang Lim,Junhong Wu,Xuefeng Wang,Nicholas Lawn,Guanzhong Ni,Xiang Gao,Mijuan Luo,Ziyi Chen,Zongyuan Ge,Patrick Kwan
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:79 (10): 986-986 被引量:59
标识
DOI:10.1001/jamaneurol.2022.2514
摘要

Selection of antiseizure medications (ASMs) for epilepsy remains largely a trial-and-error approach. Under this approach, many patients have to endure sequential trials of ineffective treatments until the "right drugs" are prescribed.To develop and validate a deep learning model using readily available clinical information to predict treatment success with the first ASM for individual patients.This cohort study developed and validated a prognostic model. Patients were treated between 1982 and 2020. All patients were followed up for a minimum of 1 year or until failure of the first ASM. A total of 2404 adults with epilepsy newly treated at specialist clinics in Scotland, Malaysia, Australia, and China between 1982 and 2020 were considered for inclusion, of whom 606 (25.2%) were excluded from the final cohort because of missing information in 1 or more variables.One of 7 antiseizure medications.With the use of the transformer model architecture on 16 clinical factors and ASM information, this cohort study first pooled all cohorts for model training and testing. The model was trained again using the largest cohort and externally validated on the other 4 cohorts. The area under the receiver operating characteristic curve (AUROC), weighted balanced accuracy, sensitivity, and specificity of the model were all assessed for predicting treatment success based on the optimal probability cutoff. Treatment success was defined as complete seizure freedom for the first year of treatment while taking the first ASM. Performance of the transformer model was compared with other machine learning models.The final pooled cohort included 1798 adults (54.5% female; median age, 34 years [IQR, 24-50 years]). The transformer model that was trained using the pooled cohort had an AUROC of 0.65 (95% CI, 0.63-0.67) and a weighted balanced accuracy of 0.62 (95% CI, 0.60-0.64) on the test set. The model that was trained using the largest cohort only had AUROCs ranging from 0.52 to 0.60 and a weighted balanced accuracy ranging from 0.51 to 0.62 in the external validation cohorts. Number of pretreatment seizures, presence of psychiatric disorders, electroencephalography, and brain imaging findings were the most important clinical variables for predicted outcomes in both models. The transformer model that was developed using the pooled cohort outperformed 2 of the 5 other models tested in terms of AUROC.In this cohort study, a deep learning model showed the feasibility of personalized prediction of response to ASMs based on clinical information. With improvement of performance, such as by incorporating genetic and imaging data, this model may potentially assist clinicians in selecting the right drug at the first trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
歪歪象完成签到,获得积分10
刚刚
孟德之恋关注了科研通微信公众号
刚刚
123完成签到,获得积分10
刚刚
Eileen发布了新的文献求助20
刚刚
我来文献求助了完成签到,获得积分10
1秒前
清爽的含灵完成签到,获得积分10
1秒前
拓力库海完成签到,获得积分10
1秒前
Chen完成签到,获得积分10
1秒前
陈富贵完成签到 ,获得积分10
1秒前
端庄的寄凡完成签到 ,获得积分10
1秒前
田田田完成签到,获得积分10
2秒前
在水一方应助phoebe采纳,获得10
2秒前
3秒前
舒适的初雪完成签到,获得积分10
3秒前
瞿访云完成签到,获得积分10
3秒前
华仔应助曾经的慕灵采纳,获得10
3秒前
无情的问枫完成签到,获得积分10
4秒前
难过的尔丝完成签到,获得积分10
4秒前
勤劳傲安完成签到,获得积分10
4秒前
一个兴趣使然的人完成签到,获得积分10
4秒前
我爱学习完成签到,获得积分10
5秒前
5秒前
QOP应助小圆采纳,获得10
5秒前
5秒前
晴朗完成签到,获得积分10
6秒前
yi111完成签到,获得积分10
6秒前
7秒前
雪白炎彬完成签到,获得积分10
7秒前
黄油苍蝇发布了新的文献求助10
8秒前
梓歆完成签到 ,获得积分10
8秒前
冷傲忆彤完成签到 ,获得积分10
9秒前
我是老大应助Bab采纳,获得10
9秒前
lxl1996完成签到,获得积分10
9秒前
顶针发布了新的文献求助30
9秒前
null发布了新的文献求助10
9秒前
wuju完成签到,获得积分10
9秒前
wxy完成签到,获得积分10
9秒前
劳恩特完成签到,获得积分10
10秒前
终成院士完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347989
求助须知:如何正确求助?哪些是违规求助? 4482270
关于积分的说明 13949609
捐赠科研通 4380739
什么是DOI,文献DOI怎么找? 2407067
邀请新用户注册赠送积分活动 1399655
关于科研通互助平台的介绍 1372925