清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Validation of a Deep Learning Model for Predicting Treatment Response in Patients With Newly Diagnosed Epilepsy

队列 医学 癫痫 接收机工作特性 临床试验 队列研究 物理疗法 内科学 精神科
作者
Haris Hakeem,Wei Feng,Zhibin Chen,Jiun Choong,Martin J. Brodie,Si‐Lei Fong,Kheng Seang Lim,Junhong Wu,Xuefeng Wang,Nicholas Lawn,Guanzhong Ni,Xiang Gao,Mijuan Luo,Ziyi Chen,Zongyuan Ge,Patrick Kwan
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:79 (10): 986-986 被引量:53
标识
DOI:10.1001/jamaneurol.2022.2514
摘要

Selection of antiseizure medications (ASMs) for epilepsy remains largely a trial-and-error approach. Under this approach, many patients have to endure sequential trials of ineffective treatments until the "right drugs" are prescribed.To develop and validate a deep learning model using readily available clinical information to predict treatment success with the first ASM for individual patients.This cohort study developed and validated a prognostic model. Patients were treated between 1982 and 2020. All patients were followed up for a minimum of 1 year or until failure of the first ASM. A total of 2404 adults with epilepsy newly treated at specialist clinics in Scotland, Malaysia, Australia, and China between 1982 and 2020 were considered for inclusion, of whom 606 (25.2%) were excluded from the final cohort because of missing information in 1 or more variables.One of 7 antiseizure medications.With the use of the transformer model architecture on 16 clinical factors and ASM information, this cohort study first pooled all cohorts for model training and testing. The model was trained again using the largest cohort and externally validated on the other 4 cohorts. The area under the receiver operating characteristic curve (AUROC), weighted balanced accuracy, sensitivity, and specificity of the model were all assessed for predicting treatment success based on the optimal probability cutoff. Treatment success was defined as complete seizure freedom for the first year of treatment while taking the first ASM. Performance of the transformer model was compared with other machine learning models.The final pooled cohort included 1798 adults (54.5% female; median age, 34 years [IQR, 24-50 years]). The transformer model that was trained using the pooled cohort had an AUROC of 0.65 (95% CI, 0.63-0.67) and a weighted balanced accuracy of 0.62 (95% CI, 0.60-0.64) on the test set. The model that was trained using the largest cohort only had AUROCs ranging from 0.52 to 0.60 and a weighted balanced accuracy ranging from 0.51 to 0.62 in the external validation cohorts. Number of pretreatment seizures, presence of psychiatric disorders, electroencephalography, and brain imaging findings were the most important clinical variables for predicted outcomes in both models. The transformer model that was developed using the pooled cohort outperformed 2 of the 5 other models tested in terms of AUROC.In this cohort study, a deep learning model showed the feasibility of personalized prediction of response to ASMs based on clinical information. With improvement of performance, such as by incorporating genetic and imaging data, this model may potentially assist clinicians in selecting the right drug at the first trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Square完成签到,获得积分10
7秒前
ff完成签到,获得积分10
15秒前
杨蒙博完成签到 ,获得积分10
31秒前
32秒前
不安青牛应助迷人的冰安采纳,获得10
42秒前
lorentzh完成签到,获得积分10
46秒前
嘟嘟完成签到 ,获得积分10
52秒前
1分钟前
nkuhao完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
even完成签到 ,获得积分10
1分钟前
1分钟前
芽衣完成签到 ,获得积分10
1分钟前
HY完成签到 ,获得积分10
1分钟前
ding应助成就的笑翠采纳,获得10
1分钟前
Vivian完成签到 ,获得积分10
1分钟前
迷人的冰安完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
海丽完成签到 ,获得积分10
2分钟前
2分钟前
笨笨小刺猬完成签到,获得积分10
2分钟前
乐乐应助成就的笑翠采纳,获得10
2分钟前
Silence完成签到 ,获得积分10
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
2分钟前
半夏完成签到 ,获得积分10
2分钟前
2分钟前
JJ完成签到 ,获得积分0
2分钟前
2分钟前
RenatoCai完成签到 ,获得积分10
2分钟前
成就的笑翠完成签到,获得积分10
2分钟前
温不胜的破木吉他完成签到 ,获得积分10
2分钟前
3分钟前
我是老大应助成就的笑翠采纳,获得10
3分钟前
早日发文章完成签到,获得积分10
3分钟前
Cu完成签到 ,获得积分10
3分钟前
daguan完成签到,获得积分10
3分钟前
阁主完成签到,获得积分10
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124826
求助须知:如何正确求助?哪些是违规求助? 3662605
关于积分的说明 11590451
捐赠科研通 3362655
什么是DOI,文献DOI怎么找? 1847719
邀请新用户注册赠送积分活动 912043
科研通“疑难数据库(出版商)”最低求助积分说明 827849