Development and Validation of a Joint Attention–Based Deep Learning System for Detection and Symptom Severity Assessment of Autism Spectrum Disorder

自闭症谱系障碍 量表 接收机工作特性 共同注意 自闭症 召回 评定量表 心理学 典型地发展 听力学 临床心理学 医学 发展心理学 内科学 认知心理学
作者
Chanyoung Ko,Jae-Hyun Lim,JaeSeong Hong,Soon‐Beom Hong,Yu Rang Park
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (5): e2315174-e2315174 被引量:11
标识
DOI:10.1001/jamanetworkopen.2023.15174
摘要

Importance Joint attention, composed of complex behaviors, is an early-emerging social function that is deficient in children with autism spectrum disorder (ASD). Currently, no methods are available for objectively quantifying joint attention. Objective To train deep learning (DL) models to distinguish ASD from typical development (TD) and to differentiate ASD symptom severities using video data of joint attention behaviors. Design, Setting, and Participants In this diagnostic study, joint attention tasks were administered to children with and without ASD, and video data were collected from multiple institutions from August 5, 2021, to July 18, 2022. Of 110 children, 95 (86.4%) completed study measures. Enrollment criteria were 24 to 72 months of age and ability to sit with no history of visual or auditory deficits. Exposures Children were screened using the Childhood Autism Rating Scale. Forty-five children were diagnosed with ASD. Three types of joint attention were assessed using a specific protocol. Main Outcomes and Measures Correctly distinguishing ASD from TD and different levels of ASD symptom severity using the DL model area under the receiver operating characteristic curve (AUROC), accuracy, precision, and recall. Results The analytical population consisted of 45 children with ASD (mean [SD] age, 48.0 [13.4] months; 24 [53.3%] boys) vs 50 with TD (mean [SD] age, 47.9 [12.5] months; 27 [54.0%] boys). The DL ASD vs TD models showed good predictive performance for initiation of joint attention (IJA) (AUROC, 99.6% [95% CI, 99.4%-99.7%]; accuracy, 97.6% [95% CI, 97.1%-98.1%]; precision, 95.5% [95% CI, 94.4%-96.5%]; and recall, 99.2% [95% CI, 98.7%-99.6%]), low-level response to joint attention (RJA) (AUROC, 99.8% [95% CI, 99.6%-99.9%]; accuracy, 98.8% [95% CI, 98.4%-99.2%]; precision, 98.9% [95% CI, 98.3%-99.4%]; and recall, 99.1% [95% CI, 98.6%-99.5%]), and high-level RJA (AUROC, 99.5% [95% CI, 99.2%-99.8%]; accuracy, 98.4% [95% CI, 97.9%-98.9%]; precision, 98.8% [95% CI, 98.2%-99.4%]; and recall, 98.6% [95% CI, 97.9%-99.2%]). The DL-based ASD symptom severity models showed reasonable predictive performance for IJA (AUROC, 90.3% [95% CI, 88.8%-91.8%]; accuracy, 84.8% [95% CI, 82.3%-87.2%]; precision, 76.2% [95% CI, 72.9%-79.6%]; and recall, 84.8% [95% CI, 82.3%-87.2%]), low-level RJA (AUROC, 84.4% [95% CI, 82.0%-86.7%]; accuracy, 78.4% [95% CI, 75.0%-81.7%]; precision, 74.7% [95% CI, 70.4%-78.8%]; and recall, 78.4% [95% CI, 75.0%-81.7%]), and high-level RJA (AUROC, 84.2% [95% CI, 81.8%-86.6%]; accuracy, 81.0% [95% CI, 77.3%-84.4%]; precision, 68.6% [95% CI, 63.8%-73.6%]; and recall, 81.0% [95% CI, 77.3%-84.4%]). Conclusions and Relevance In this diagnostic study, DL models for identifying ASD and differentiating levels of ASD symptom severity were developed and the premises for DL-based predictions were visualized. The findings suggest that this method may allow digital measurement of joint attention; however, follow-up studies are necessary for further validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Percy发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
万能图书馆应助WRT采纳,获得10
1秒前
tetrakis完成签到,获得积分10
1秒前
2秒前
铁树完成签到,获得积分10
2秒前
hahhhhhh2发布了新的文献求助10
2秒前
怡然尔白发布了新的文献求助10
2秒前
李健的小迷弟应助阮楷瑞采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
joy完成签到,获得积分0
4秒前
4秒前
HHs完成签到,获得积分10
4秒前
4秒前
4秒前
万能的翔王完成签到,获得积分10
5秒前
5秒前
传奇3应助mmmx采纳,获得10
5秒前
在水一方应助Dylan采纳,获得10
5秒前
6秒前
6秒前
QJL完成签到,获得积分10
6秒前
在水一方应助学术小白采纳,获得10
6秒前
莫明发布了新的文献求助10
6秒前
6秒前
李健的小迷弟应助wq采纳,获得10
6秒前
6秒前
微光熠完成签到,获得积分10
6秒前
6秒前
6秒前
imp发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
HHs发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214