Medium-term multi-stage distributionally robust scheduling of hydro–wind–solar complementary systems in electricity markets considering multiple time-scale uncertainties

数学优化 随机规划 计算机科学 调度(生产过程) 概率分布 整数规划 强对偶性 风力发电 运筹学 最优化问题 工程类 数学 统计 电气工程
作者
Zhuangzhuang Li,Ping Yang,Yi Guo,Guanpeng Lu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:347: 121371-121371
标识
DOI:10.1016/j.apenergy.2023.121371
摘要

Joint trading of hydro–wind–solar complementary systems (HWSCSs) in the electricity market (EM) helps to reduce the imbalance cost and increase profits. However, multiple energy resources and market price uncertainties affect the trading strategies. Existing medium-term (MT) scheduling approaches assume that the probability distribution of the random variable is perfectly known. Short-term variations were also ignored, which led to revenue loss and trading risk. To address the above issues, this paper proposes an MT multi-stage distributionally robust optimization (MDRO) scheduling approach for a price-taking HWSCS in the EM. Firstly, hourly unit commitment (HUC) constraints are incorporated into the MT scheduling model to accurately capture short-term variations. A novel ambiguity set is designed based on the modified chi-square distance to address probability distribution uncertainties at two different time scales. Subsequently, an MDRO scheduling model is proposed to optimize the trading strategy. Finally, the proposed MDRO model is converted to a large-scale multi-stage integer programming problem based on linearization and reformation. The stochastic dual dynamic integer programming algorithm is modified to ensure computational tractability. Xiluodu-Xiangjiaba HWSCS, located in the Jinsha River in China, was selected as a case study. The results show that: 1) the MDRO model is more robust to distributional uncertainties than the multi-stage stochastic programming (MSSP) model. When the probability distribution of the random variable changes, the MDRO model yields a higher expected revenue (+2.43%) and a lower standard deviation (-60.8%) of revenue, which illustrates lower trading risk. 2) Compared with MSSP, deterministic, two-stage stochastic programming, and distributionally robust optimization models, the MDRO model exhibits the best out-of-sample performance in terms of the highest expected revenue and lowest trading risk. 3) Incorporating HUC constraints into the MDRO model helps to increase the total revenue (+3.53%) and energy generation (+3.31%) at the expense of increasing the computational burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13发布了新的文献求助30
刚刚
Hello应助从笙采纳,获得10
1秒前
lydiaabc发布了新的文献求助10
1秒前
人生丁沸发布了新的文献求助10
1秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
1秒前
1秒前
1秒前
All完成签到,获得积分10
2秒前
疯少发布了新的文献求助10
2秒前
Azer发布了新的文献求助10
2秒前
2秒前
真实的黑夜完成签到,获得积分20
3秒前
贺贺贺发布了新的文献求助10
3秒前
LiLy发布了新的文献求助10
3秒前
3秒前
3秒前
十三月发布了新的文献求助10
3秒前
AIA7发布了新的文献求助10
4秒前
Oasis完成签到,获得积分10
4秒前
Owen应助饭老师采纳,获得30
4秒前
4秒前
学术大佬阿呆完成签到 ,获得积分10
4秒前
石头发布了新的文献求助10
4秒前
5秒前
傲娇的诗兰完成签到,获得积分10
5秒前
师霸完成签到,获得积分10
5秒前
CodeCraft应助任性宇豪采纳,获得10
5秒前
橘子味汽水完成签到 ,获得积分10
5秒前
深情安青应助LT采纳,获得10
5秒前
Caden完成签到 ,获得积分10
6秒前
6秒前
6秒前
ltr发布了新的文献求助10
6秒前
1177发布了新的文献求助10
6秒前
华仔应助roosterstorm采纳,获得80
7秒前
CNSer完成签到,获得积分10
7秒前
一口娴蛋黄完成签到,获得积分10
7秒前
power完成签到,获得积分10
8秒前
cm_1231发布了新的文献求助10
8秒前
wanci应助AIA7采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697836
求助须知:如何正确求助?哪些是违规求助? 4067197
关于积分的说明 12574406
捐赠科研通 3766683
什么是DOI,文献DOI怎么找? 2080151
邀请新用户注册赠送积分活动 1108299
科研通“疑难数据库(出版商)”最低求助积分说明 986614