StylizedGS: Controllable Stylization for 3D Gaussian Splatting

计算机科学 人工智能 计算机视觉 计算机图形学(图像) 高斯分布 模式识别(心理学) 量子力学 物理
作者
Dingxi Zhang,Yu-Jie Yuan,Zhuoxun Chen,Fang‐Lue Zhang,Zhenliang He,Shiguang Shan,Lin Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (12): 11961-11973 被引量:7
标识
DOI:10.1109/tpami.2025.3604010
摘要

As XR technology continues to advance rapidly, 3D generation and editing are increasingly crucial. Among these, stylization plays a key role in enhancing the appearance of 3D models. By utilizing stylization, users can achieve consistent artistic effects in 3D editing using a single reference style image, making it a user-friendly editing method. However, recent NeRF-based 3D stylization methods encounter efficiency issues that impact the user experience, and their implicit nature limits their ability to accurately transfer geometric pattern styles. Additionally, the ability for artists to apply flexible control over stylized scenes is considered highly desirable to foster an environment conducive to creative exploration. To address the above issues, we introduce StylizedGS, an efficient 3D neural style transfer framework with adaptable control over perceptual factors based on 3D Gaussian Splatting representation. We propose a filter-based refinement to eliminate floaters that affect the stylization effects in the scene reconstruction process. The nearest neighbor-based style loss is introduced to achieve stylization by fine-tuning the geometry and color parameters of 3DGS, while a depth preservation loss with other regularizations is proposed to prevent the tampering of geometry content. Moreover, facilitated by specially designed losses, StylizedGS enables users to control color, stylized scale, and regions during the stylization to possess customization capabilities. Our method achieves high-quality stylization results characterized by faithful brushstrokes and geometric consistency with flexible controls. Extensive experiments across various scenes and styles demonstrate the effectiveness and efficiency of our method concerning both stylization quality and inference speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
36456657应助哦耶采纳,获得10
1秒前
言希完成签到 ,获得积分10
2秒前
2秒前
史蒂夫完成签到,获得积分10
2秒前
QAQ77发布了新的文献求助10
2秒前
拾一完成签到,获得积分10
2秒前
3秒前
不二应助Dsk5采纳,获得10
4秒前
4秒前
4秒前
斯文败类应助arT采纳,获得10
5秒前
6秒前
胡安完成签到,获得积分10
6秒前
kak完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
YOLO发布了新的文献求助10
7秒前
7秒前
风中慕灵发布了新的文献求助30
7秒前
8秒前
Frank发布了新的文献求助10
8秒前
bkagyin应助超级金针菇采纳,获得10
8秒前
8秒前
9秒前
9秒前
Owen应助LJP采纳,获得10
9秒前
tangyuan发布了新的文献求助10
9秒前
Spy_R完成签到,获得积分10
10秒前
啧啧啧发布了新的文献求助10
10秒前
科研通AI6应助威武青文采纳,获得30
11秒前
11秒前
kk发布了新的文献求助10
11秒前
崔崔崔发布了新的文献求助10
11秒前
11秒前
汉堡包应助呦呦呦采纳,获得10
11秒前
11秒前
syy080837发布了新的文献求助100
11秒前
12秒前
小蘑菇应助xjmmcome采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440