已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Random Forest Ensemble Modeling Strategy Combined with Quantitative Structure–Property Relationship for Density Prediction of Energetic Materials

起爆 集合预报 随机森林 计算机科学 高斯分布 数量结构-活动关系 算法 蒙特卡罗方法 大正则系综 统计物理学 数学 人工智能 计算化学 机器学习 化学 统计 物理 爆炸物 有机化学
作者
Maogang Li,Weipeng Lai,Ruirui Li,Jiajun Zhou,Yingzhe Liu,Tao Yu,Tianlong Zhang,Hongsheng Tang,Hua Li
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (2): 2752-2759 被引量:9
标识
DOI:10.1021/acsomega.2c07436
摘要

With the further development of the concept of green chemistry, the new generation of energetic materials tends to exhibit detonation properties such as higher insensitivity, higher density, and higher energy. Therefore, the precise molecular design and green and efficient synthesis of energetic materials will be one of the serious challenges. For the purpose of accurate prediction of detonation performance of energetic materials, an ensemble modeling strategy based on the combination of Monte Carlo (MC) and variable importance measurement (VIM) improved random forest (RF) and quantitative structure-property relationship (QSPR) is proposed, which was successfully used for density prediction of energetic materials. First, the structure of 162 energetic compounds was optimized by Gaussian software, and the molecular descriptor data were calculated by CODESSA software based on the optimized molecular structure. Then, the MCVIMRF_Med ensemble model was constructed on the basis of the above molecular descriptor data and the corresponding energetic compound density index. The joint X-Y distance algorithm (SPXY) is used to partition the data set. And then, MC is used to further divide the calibration set data into multiple subsets for the construction of the ensemble model. The subset size and the number of iterations of the MCVIMRF_Med ensemble model were optimized through MC cross validation. The final output strategy of the ensemble model is optimized based on the optimized parameters, and an output optimization method based on median screening is proposed and successfully applied for the prediction performance optimization of the MCVIMRF_Med ensemble model. To further investigate the performance of the MCVIMRF_Med ensemble model, the performance of it was compared with partial least squares, RF, VIMRF, and MCVIMRF calibration models. It shows that the MCVIMRF_Med ensemble model can achieve a better prediction result for the density of energetic materials, with R2CV of 0.9596, RMSECV of 0.0437 g/cm3, R2P of 0.9768, RMSEP of 0.0578 g/cm3, and relative analysis deviation of prediction set of 3.951. Therefore, the MCVIMRF_Med ensemble modeling strategy combined with QSPR is an effective approach for the density prediction of energetic materials. This work is expected to provide new research ideas and technical support for accurate prediction of detonation performance of energetic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生椰拿铁死忠粉完成签到,获得积分0
2秒前
meanie完成签到 ,获得积分10
2秒前
小张完成签到 ,获得积分10
4秒前
huangsile发布了新的文献求助30
4秒前
Ava应助苏幕遮采纳,获得10
4秒前
FFFFF完成签到 ,获得积分0
5秒前
Aaron_Chia完成签到 ,获得积分10
5秒前
123发布了新的文献求助10
5秒前
LL完成签到 ,获得积分10
7秒前
小莹完成签到 ,获得积分10
7秒前
3D完成签到 ,获得积分10
7秒前
优秀的甜菜完成签到,获得积分10
11秒前
甜甜纸飞机完成签到 ,获得积分10
11秒前
西蓝花战士完成签到 ,获得积分10
12秒前
邓离谱完成签到 ,获得积分20
14秒前
碧蓝丹烟完成签到 ,获得积分10
16秒前
18秒前
22秒前
23秒前
huangsile完成签到,获得积分10
26秒前
木木发布了新的文献求助10
27秒前
研友_VZG7GZ应助yuanyuan采纳,获得10
27秒前
星忆眠发布了新的文献求助10
28秒前
CipherSage应助李小伟采纳,获得10
29秒前
乐乐应助瑶阿瑶采纳,获得10
29秒前
空勒完成签到,获得积分10
30秒前
充电宝应助lazygan采纳,获得10
31秒前
李桂芳完成签到,获得积分10
33秒前
坚强的纸飞机完成签到,获得积分10
36秒前
37秒前
CCS完成签到 ,获得积分10
38秒前
Ava应助1123048683wm采纳,获得10
39秒前
甜甜的紫菜完成签到 ,获得积分10
39秒前
HUOZHUANGCHAO完成签到,获得积分10
40秒前
酷波er应助cjfc采纳,获得10
41秒前
倾卿如玉完成签到 ,获得积分10
41秒前
山楂完成签到,获得积分10
43秒前
隐形不凡完成签到,获得积分10
43秒前
111版发布了新的文献求助10
44秒前
毛舒敏完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685259
关于积分的说明 14838243
捐赠科研通 4669177
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505474
关于科研通互助平台的介绍 1470833