激进的
光催化
过氧化氢
羟基自由基
石墨氮化碳
化学
光化学
催化作用
有机化学
作者
Jiaye Li,Shuang Pan,Yihuang Chen,Qiong Liu
标识
DOI:10.1016/j.jechem.2024.08.045
摘要
Photocatalytic oxygen reduction for hydrogen peroxide (H₂O₂) synthesis presents a green and cost-effective production method. However, achieving highly selective H₂O₂ synthesis remains challenging, necessitating precise control over free radical reaction pathways and minimizing undesirable oxidative by-products. Herein, we report for the visible light-driven simultaneous co-photocatalytic reduction of O2 to H2O2 and oxidation of biomass using the atomic rubidium-nitride modified carbon nitride (CNRb). The optimized CNRb catalyst demonstrates a record photoreduction rate of 8.01 mM h−1 for H2O2 generation and photooxidation rate of 3.75 mM h−1 for furfuryl alcohol to furoic acid, achieving a remarkable solar-to-chemical conversion (SCC) efficiency of up to 2.27%. Experimental characterizations and DFT calculation disclosed that the introducing atomic Rb–N configurations allows for the high-selective generation of superoxide radicals while suppressing hydroxyl free radical formation. This is because the Rb–N serves as the new alternative site to perceive a stronger connection position for O2 adsorption and reinforce the capability to extract protons, thereby triggering a high selective redox product formation. This study holds great potential in precisely regulating reactive radical processes at the atomic level, thereby paving the way for efficient synthesis of H2O2 coupled with biomass valorization.
科研通智能强力驱动
Strongly Powered by AbleSci AI