CBKG-DTI: Multi-Level Knowledge Distillation and Biomedical Knowledge Graph for Drug-Target Interaction Prediction

计算机科学 知识图 人工智能 图形 图论 机器学习 数据挖掘 理论计算机科学 数学 组合数学
作者
Xiaosa Zhao,Qixian Wang,Ye Zhang,Chenglong He,Minghao Yin,Xiaowei Zhao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/jbhi.2024.3500027
摘要

The prediction of drug-target interactions (DTIs) has emerged as a vital step in drug discovery. Recently, biomedical knowledge graph enables the utilization of multi-omics resources for modelling complex biological systems and further improves overall performance of specific predictive task. However, due to the scale and generalization of biomedical knowledge graph, it is necessary to capture task-specific knowledge from biomedical knowledge graph for DTI prediction. Moreover, although biomedical knowledge graph has rich interactions between biological entities, there still needs to contain unignorable structural information of drugs or targets in the multi-modal fusion manner. To this end, we develop a novel DTI identification framework, CBKG-DTI, which aims to distill task-specific knowledge from the complex knowledge graph to the lightweight DTI prediction model. Specifically, CBKG-DTI first introduces a hierarchy-aware knowledge graph embedding as teacher model to capture semantic hierarchy information of biomedical knowledge graph. Then, to further improve model performance, CBKG-DTI integrates information from multiple aspects such as relational information and structural information by constructing a heterogeneous network and then employs a heterogeneous graph attention network framework as the lightweight student model. Moreover, we design a multi-level distillation mechanism to improve the representation and prediction ability of the lightweight student model via capturing the representation and logit distribution of the teacher model. Finally, we conduct the extensive comparison experiments and can reach the AUC of 0.9751 and the AUPR of 0.6310 under 5-fold cross validation. This not only demonstrates the superiority of CBKG-DTI in DTI prediction, but also, more importantly, validate the effectiveness of the framework capturing task-specific knowledge from biomedical knowledge graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心澄宇静发布了新的文献求助10
2秒前
上官枫完成签到 ,获得积分10
4秒前
张龙雨发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
zyz1138关注了科研通微信公众号
8秒前
胡萝卜和小灰兔完成签到 ,获得积分10
8秒前
仁爱听露完成签到,获得积分10
11秒前
11秒前
12秒前
周七七发布了新的文献求助10
12秒前
wylwyl完成签到,获得积分10
13秒前
张龙雨完成签到,获得积分10
13秒前
喻鞅完成签到,获得积分0
14秒前
hah完成签到,获得积分10
15秒前
HJM发布了新的文献求助10
15秒前
16秒前
jiangqingquan完成签到,获得积分10
16秒前
19秒前
坦率的棒棒糖完成签到,获得积分10
20秒前
23秒前
啾啾发布了新的文献求助10
23秒前
往往超可爱完成签到 ,获得积分10
23秒前
24秒前
修fei完成签到 ,获得积分10
27秒前
zyz1138发布了新的文献求助10
27秒前
南苏发布了新的文献求助10
27秒前
小马甲应助周七七采纳,获得10
29秒前
池鱼完成签到,获得积分10
29秒前
假装超人会飞完成签到,获得积分10
31秒前
Drlee完成签到 ,获得积分10
31秒前
NICAI应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
酷波er应助科研通管家采纳,获得10
31秒前
32秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
充电宝应助科研通管家采纳,获得10
32秒前
NICAI应助科研通管家采纳,获得10
32秒前
吹雪完成签到,获得积分0
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559215
求助须知:如何正确求助?哪些是违规求助? 4644402
关于积分的说明 14672398
捐赠科研通 4585605
什么是DOI,文献DOI怎么找? 2515751
邀请新用户注册赠送积分活动 1489624
关于科研通互助平台的介绍 1460563