D-NAT: Data-Driven Non-Ideality Aware Training Framework for Fabricated Computing-In-Memory Macros

纳特 计算机科学 随机存取存储器 材料科学 工程物理 物理 计算机网络 计算机硬件 程序设计语言
作者
Ming-Guang Lin,Chi-Tse Huang,Yu-Chuan Chuang,Yi-Ta Chen,Ying–Tuan Hsu,Yukai Chen,Jyun‐Jhe Chou,Tsung-Te Liu,Chi‐Sheng Shih,An-Yeu Wu
出处
期刊:IEEE Journal on Emerging and Selected Topics in Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:12 (2): 381-392 被引量:9
标识
DOI:10.1109/jetcas.2022.3171268
摘要

To enable energy-efficient computation for deep neural networks (DNNs) at edge, computing-in-memory (CIM) is proposed to reduce the energy costs during intense off-chip memory access. However, CIM is prone to multiply-accumulate (MAC) errors due to non-idealities of memory crossbars and peripheral circuits, which severely degrade the accuracy of DNNs. In this work, we propose a Data-Driven Non-ideality Aware Training (D-NAT) framework to compensate for the accuracy degradation. The proposed D-NAT framework has the following contributions: 1) We measured a fabricated SRAM-based CIM macro to obtain a data-driven MAC error model (D-MAC-EM). Based on the derived D-MAC-EM, we analyze the impact of the non-idealities on DNN's accuracy. 2) To make DNNs robust to the non-idealities of CIM macros, we incorporate the measured D-MAC-EM into DNN's training procedure. Moreover, we propose a statistical training mechanism to better estimate the gradients of the discrete D-MAC-EM. 3) We investigate trade-offs between quantization range and quantization errors. To mitigate the quantization errors in activations, we introduce extended PACT (E-PACT) that adaptively learns the upper and lower bounds of input activations for each layer. Simulation results show that our proposed D-NAT improves the accuracy of ResNet20, VGG8, ResNet34, and VGG16 by 78.98%, 71.8%, 72.04%, and 57.85%, respectively, which reaches the ideal upper bound of the quantized model. Lastly, the D-NAT framework is validated on an FPGA platform with the fabricated SRAM-based CIM macro chip. Based on the measurement results, D-NAT successfully recovers the accuracy under non-idealities of a real SRAM-based CIM macro.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助爱吃大嘴巴采纳,获得10
刚刚
端庄的人英完成签到 ,获得积分10
1秒前
1秒前
未夕晴完成签到,获得积分10
2秒前
2秒前
Unsurpassed完成签到,获得积分20
3秒前
lc001发布了新的文献求助10
3秒前
团子发布了新的文献求助10
3秒前
李雅琳发布了新的文献求助10
3秒前
独特智宸关注了科研通微信公众号
5秒前
鲤跃发布了新的文献求助10
5秒前
5秒前
酷波er应助开朗皮皮虾采纳,获得10
5秒前
54发布了新的文献求助10
6秒前
6秒前
xiaohe应助吕培森采纳,获得10
6秒前
研友_rLmMYL完成签到,获得积分10
6秒前
joestar完成签到,获得积分10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
自觉秋完成签到,获得积分10
8秒前
唐山夕发布了新的文献求助10
8秒前
英俊的铭应助yuhong采纳,获得10
8秒前
8秒前
桐桐应助听话的青荷采纳,获得10
9秒前
高贵花瓣发布了新的文献求助10
9秒前
10秒前
sophielanlan发布了新的文献求助10
10秒前
bkagyin应助夏夏采纳,获得10
11秒前
11秒前
Dynia发布了新的文献求助30
11秒前
11秒前
大模型应助Jerry采纳,获得10
12秒前
hanjresearch完成签到,获得积分10
12秒前
12秒前
艾因兹怀斯完成签到,获得积分10
12秒前
12秒前
大模型应助任罗川采纳,获得10
12秒前
科研通AI6应助玉七采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632146
求助须知:如何正确求助?哪些是违规求助? 4726435
关于积分的说明 14981405
捐赠科研通 4790127
什么是DOI,文献DOI怎么找? 2558203
邀请新用户注册赠送积分活动 1518601
关于科研通互助平台的介绍 1479045