清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Advanced calibration of mortality prediction on cardiovascular disease using feature-based artificial neural network

人工神经网络 计算机科学 校准 特征(语言学) 人工智能 机器学习 疾病 数据挖掘 模式识别(心理学) 医学 内科学 统计 数学 语言学 哲学
作者
Linh Tran,Alessio Bonti,Lianhua Chi,Mohamed Abdelrazek,Yi‐Ping Phoebe Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:203: 117393-117393 被引量:9
标识
DOI:10.1016/j.eswa.2022.117393
摘要

• Developed a novel neural network for CVD mortality prediction with clinical data. • Proposed a more time-efficient feature-based artificial neural network (ANN). • Investigated feature representation to improve ANN for practical guideline. • Boosted calibration of neural networks and enabled model to make less mistakes. • Made model updates in clinical context more accessible, flexible and reliable. Cardiovascular (CVD) is the leading cause of death worldwide and a significant public health concern. Therefore, its mortality prediction is crucial to many existing treatment guidelines. Medical claims data can be used to accurately foresee the health outcomes of patients contracting to a variety of diseases. Many machine learning algorithms, especially deep learning artificial neural networks, can predict mortality rate among patients with CVD using clinical data. Calibration of probabilistic prediction is essential for precise medical interventions as it indicates how well a model’s output matches the probability of the event. However, deep learning neural networks are poorly calibrated. Through experiments, we observe that feature representation is an important factor influencing calibration. This paper proposes a novel feature-based deep learning neural network framework to predict the mortality rate among patients with CVD. Our focus is to present a comprehensive study to achieve advanced performance calibration of mortality prediction on CVD in leveraging deep learning architecture and feature representations. Our study demonstrates that the proposed feature-based neural network framework integrated with Principal Component Analysis or Autoencoders significantly reduces training time and boosts calibration, making model updates in clinical context more flexible and decision-making in medical prevention more reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倾听昆语完成签到 ,获得积分10
2秒前
huanghe完成签到,获得积分10
4秒前
6秒前
辛勤的悟空完成签到,获得积分10
8秒前
lee发布了新的文献求助10
10秒前
无辜的行云完成签到 ,获得积分0
17秒前
lee完成签到,获得积分10
19秒前
烟消云散完成签到,获得积分10
23秒前
星辰完成签到 ,获得积分10
32秒前
定西发布了新的文献求助10
51秒前
浚稚完成签到 ,获得积分10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
小瓢虫完成签到,获得积分10
1分钟前
雪流星完成签到 ,获得积分10
1分钟前
定西发布了新的文献求助10
2分钟前
chichenglin完成签到 ,获得积分10
2分钟前
hugeyoung完成签到,获得积分10
2分钟前
潘fujun完成签到 ,获得积分10
2分钟前
孟寐以求完成签到 ,获得积分10
2分钟前
gnr2000完成签到,获得积分10
2分钟前
dawn完成签到,获得积分20
2分钟前
3分钟前
啵妞完成签到 ,获得积分10
3分钟前
dawn发布了新的文献求助10
3分钟前
3分钟前
jlwang完成签到,获得积分10
3分钟前
hongt05完成签到 ,获得积分10
3分钟前
huiluowork完成签到 ,获得积分10
3分钟前
cdercder应助科研通管家采纳,获得20
3分钟前
Sunsheng应助科研通管家采纳,获得10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
Sunsheng应助科研通管家采纳,获得10
3分钟前
定西发布了新的文献求助10
3分钟前
bo完成签到 ,获得积分10
3分钟前
HR112完成签到 ,获得积分10
4分钟前
吕半鬼完成签到,获得积分0
4分钟前
yindi1991完成签到 ,获得积分10
4分钟前
彩色的芷容完成签到 ,获得积分10
4分钟前
医学事业完成签到,获得积分10
4分钟前
隐形曼青应助zjy采纳,获得10
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837565
求助须知:如何正确求助?哪些是违规求助? 3379667
关于积分的说明 10510096
捐赠科研通 3099269
什么是DOI,文献DOI怎么找? 1707021
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615