FL-MGVN: Federated learning for anomaly detection using mixed gaussian variational self-encoding network

超球体 异常检测 计算机科学 高斯分布 MNIST数据库 人工智能 异常(物理) 特征向量 模式识别(心理学) 编码器 高斯网络模型 编码(内存) 数据挖掘 深度学习 物理 量子力学 凝聚态物理 操作系统
作者
Di Wu,Yi Deng,Mingyong Li
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (2): 102839-102839 被引量:1
标识
DOI:10.1016/j.ipm.2021.102839
摘要

• Propose an anomaly detection classification model that incorporates federated learning and mixed Gaussian variational self-coding networks. • Realize anomaly detection based on federated learning, including network attack and sample dissimilarity. • The proposed MGVN network model first constructs a variational self-coder using a mixed gaussian prior to extract features from the input data, and then constructs a deep support vector network with a mixed gaussian variational self-coder. • Verify the multi-classification anomaly detection performance on benchmark datasets such as NSL-KDD, MNIST and Fashion-MNIST. Anomalous data are such data that deviate from a large number of normal data points, which often have negative impacts on various systems. Current anomaly detection technology suffers from low detection accuracy, high false alarm rate and lack of labeled data. Anomaly detection is of great practical importance as an effective means to detect anomalies in the data and provide important support for the normal operation of various systems. In this paper, we propose an anomaly detection classification model that incorporates federated learning and mixed Gaussian variational self-encoding networks, namely MGVN. The proposed MGVN network model first constructs a variational self-encoder using a mixed Gaussian prior to extracting features from the input data, and then constructs a deep support vector network with the mixed Gaussian variational self-encoder to compress the feature space. The MGVN finds the minimum hypersphere to separate the normal and abnormal data and measures the abnormal fraction by calculating the Euclidean distance between the data features and the hypersphere center. Federated learning is finally incorporated with MGVN (FL-MGVN) to effectively address the problems that multiple participants collaboratively train a global model without sharing private data. The experiments are conducted on the benchmark datasets such as NSL-KDD, MNIST and Fashion-MNIST, which demonstrate that the proposed FL-MGVN has higher recognition performance and classification accuracy than other methods. The average AUC on MNIST and Fashion-MNIST reached 0.954 and 0.937, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XianshengJin完成签到,获得积分10
1秒前
1秒前
Lucas应助Khr1stINK采纳,获得10
1秒前
大个应助Akaqqqi采纳,获得10
1秒前
2秒前
2秒前
2秒前
zhiyun发布了新的文献求助10
3秒前
万能图书馆应助内向口红采纳,获得10
3秒前
戎荣发布了新的文献求助10
3秒前
开心谷秋完成签到,获得积分10
3秒前
3秒前
沉默不评发布了新的文献求助10
4秒前
4秒前
4秒前
OOYWZEHNN发布了新的文献求助10
4秒前
Shaw完成签到,获得积分10
4秒前
夏天发布了新的文献求助10
4秒前
小李发布了新的文献求助10
5秒前
夏天发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
刻苦沛芹完成签到,获得积分10
6秒前
打打应助炙热忆文采纳,获得10
6秒前
Orange应助牛马人采纳,获得10
7秒前
杨枝甘露完成签到 ,获得积分10
7秒前
花海完成签到,获得积分10
7秒前
FWXZ发布了新的文献求助10
7秒前
Devil发布了新的文献求助10
8秒前
鱼与完成签到,获得积分10
8秒前
8秒前
杨紫宸发布了新的文献求助10
8秒前
lilei发布了新的文献求助10
9秒前
祁淑娴发布了新的文献求助10
9秒前
9秒前
住在月亮隔壁完成签到,获得积分10
10秒前
lulu完成签到,获得积分20
10秒前
Mia233完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210