计算机科学
冗余(工程)
卷积神经网络
特征(语言学)
块(置换群论)
卷积(计算机科学)
人工智能
模式识别(心理学)
并行计算
人工神经网络
计算机工程
几何学
数学
语言学
操作系统
哲学
作者
Kai Han,Yunhe Wang,Chang Xu,Jianyuan Guo,Chunjing Xu,Enhua Wu,Qi Tian
标识
DOI:10.1007/s11263-022-01575-y
摘要
Deploying convolutional neural networks (CNNs) on mobile devices is difficult due to the limited memory and computation resources. We aim to design efficient neural networks for heterogeneous devices including CPU and GPU, by exploiting the redundancy in feature maps, which has rarely been investigated in neural architecture design. For CPU-like devices, we propose a novel CPU-efficient Ghost (C-Ghost) module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed C-Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. C-Ghost bottlenecks are designed to stack C-Ghost modules, and then the lightweight C-GhostNet can be easily established. We further consider the efficient networks for GPU devices. Without involving too many GPU-inefficient operations (e.g., depth-wise convolution) in a building stage, we propose to utilize the stage-wise feature redundancy to formulate GPU-efficient Ghost (G-Ghost) stage structure. The features in a stage are split into two parts where the first part is processed using the original block with fewer output channels for generating intrinsic features, and the other are generated using cheap operations by exploiting stage-wise redundancy. Experiments conducted on benchmarks demonstrate the effectiveness of the proposed C-Ghost module and the G-Ghost stage. C-GhostNet and G-GhostNet can achieve the optimal trade-off of accuracy and latency for CPU and GPU, respectively. MindSpore code is available at https://gitee.com/mindspore/models/pulls/1809 , and PyTorch code is available at https://github.com/huawei-noah/CV-Backbones .
科研通智能强力驱动
Strongly Powered by AbleSci AI