GhostNets on Heterogeneous Devices via Cheap Operations

计算机科学 冗余(工程) 卷积神经网络 特征(语言学) 块(置换群论) 卷积(计算机科学) 人工智能 模式识别(心理学) 并行计算 人工神经网络 计算机工程 几何学 数学 语言学 操作系统 哲学
作者
Kai Han,Yunhe Wang,Chang Xu,Jianyuan Guo,Chunjing Xu,Enhua Wu,Qi Tian
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:130 (4): 1050-1069 被引量:87
标识
DOI:10.1007/s11263-022-01575-y
摘要

Deploying convolutional neural networks (CNNs) on mobile devices is difficult due to the limited memory and computation resources. We aim to design efficient neural networks for heterogeneous devices including CPU and GPU, by exploiting the redundancy in feature maps, which has rarely been investigated in neural architecture design. For CPU-like devices, we propose a novel CPU-efficient Ghost (C-Ghost) module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed C-Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. C-Ghost bottlenecks are designed to stack C-Ghost modules, and then the lightweight C-GhostNet can be easily established. We further consider the efficient networks for GPU devices. Without involving too many GPU-inefficient operations (e.g., depth-wise convolution) in a building stage, we propose to utilize the stage-wise feature redundancy to formulate GPU-efficient Ghost (G-Ghost) stage structure. The features in a stage are split into two parts where the first part is processed using the original block with fewer output channels for generating intrinsic features, and the other are generated using cheap operations by exploiting stage-wise redundancy. Experiments conducted on benchmarks demonstrate the effectiveness of the proposed C-Ghost module and the G-Ghost stage. C-GhostNet and G-GhostNet can achieve the optimal trade-off of accuracy and latency for CPU and GPU, respectively. MindSpore code is available at https://gitee.com/mindspore/models/pulls/1809 , and PyTorch code is available at https://github.com/huawei-noah/CV-Backbones .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
39hpl完成签到,获得积分10
刚刚
2秒前
搜集达人应助李佳采纳,获得10
2秒前
nancy_liang完成签到 ,获得积分10
2秒前
science完成签到,获得积分0
3秒前
AJ发布了新的文献求助100
5秒前
安详晓亦发布了新的文献求助10
5秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
胖丁应助帅帅子采纳,获得20
9秒前
害怕的又晴完成签到,获得积分10
9秒前
DeafCrow发布了新的文献求助10
10秒前
蓝色天空完成签到,获得积分10
10秒前
彭于晏应助震动的强炫采纳,获得10
10秒前
耍酷的大门应助gumiho1007采纳,获得10
11秒前
smile发布了新的文献求助10
11秒前
FashionBoy应助甜美靖雁采纳,获得10
12秒前
科研通AI6应助谢晓东采纳,获得10
12秒前
隐形曼青应助糖糖糖唐采纳,获得10
14秒前
四福祥驳回了852应助
14秒前
JamesPei应助kk子采纳,获得10
14秒前
15秒前
15秒前
健康的妙菱完成签到,获得积分10
15秒前
牧妙芹完成签到,获得积分10
15秒前
李健应助诚心凌珍采纳,获得10
16秒前
传奇3应助小困采纳,获得10
17秒前
我的光完成签到,获得积分20
17秒前
zhaozhao发布了新的文献求助30
18秒前
顾矜应助苏翰英采纳,获得10
18秒前
找文献呢完成签到,获得积分10
19秒前
柴桑青木应助蘑菇采纳,获得10
20秒前
20秒前
鑫酱完成签到,获得积分10
20秒前
20秒前
20秒前
zzzkkk完成签到,获得积分10
21秒前
gabee完成签到 ,获得积分10
21秒前
LM完成签到,获得积分10
22秒前
lelelele完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4282588
求助须知:如何正确求助?哪些是违规求助? 3810772
关于积分的说明 11936904
捐赠科研通 3457250
什么是DOI,文献DOI怎么找? 1896009
邀请新用户注册赠送积分活动 944874
科研通“疑难数据库(出版商)”最低求助积分说明 848649