亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HFENet: A lightweight hand‐crafted feature enhanced CNN for ceramic tile surface defect detection

瓦片 计算机科学 人工智能 Prewitt算子 卷积神经网络 特征(语言学) 边缘检测 计算机视觉 特征提取 GSM演进的增强数据速率 模式识别(心理学) 图像处理 图像(数学) 材料科学 哲学 复合材料 语言学
作者
Fangfang Lu,Zhihao Zhang,Lingling Guo,Jingjing Chen,Yihan Zhu,Ke Yan,Xiaokang Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (12): 10670-10693 被引量:10
标识
DOI:10.1002/int.22935
摘要

International Journal of Intelligent SystemsEarly View RESEARCH ARTICLE HFENet: A lightweight hand-crafted feature enhanced CNN for ceramic tile surface defect detection Fangfang Lu, Fangfang Lu Shanghai University of Electric Power, Shanghai, ChinaSearch for more papers by this authorZhihao Zhang, Zhihao Zhang Shanghai University of Electric Power, Shanghai, ChinaSearch for more papers by this authorLingling Guo, Lingling Guo College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, ChinaSearch for more papers by this authorJingjing Chen, Corresponding Author Jingjing Chen joyjchan@gmail.com orcid.org/0000-0003-1737-3420 Fudan University, Handan Road, Shanghai, China Correspondence Jingjing Chen, Fudan University, Handan Road, Shanghai, 200433 China. Email: joyjchan@gmail.comSearch for more papers by this authorYihan Zhu, Yihan Zhu College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, ChinaSearch for more papers by this authorKe Yan, Ke Yan National University of Singapore, Singapore, SingaporeSearch for more papers by this authorXiaokang Zhou, Xiaokang Zhou Shiga University, Shiga, JapanSearch for more papers by this author Fangfang Lu, Fangfang Lu Shanghai University of Electric Power, Shanghai, ChinaSearch for more papers by this authorZhihao Zhang, Zhihao Zhang Shanghai University of Electric Power, Shanghai, ChinaSearch for more papers by this authorLingling Guo, Lingling Guo College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, ChinaSearch for more papers by this authorJingjing Chen, Corresponding Author Jingjing Chen joyjchan@gmail.com orcid.org/0000-0003-1737-3420 Fudan University, Handan Road, Shanghai, China Correspondence Jingjing Chen, Fudan University, Handan Road, Shanghai, 200433 China. Email: joyjchan@gmail.comSearch for more papers by this authorYihan Zhu, Yihan Zhu College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, ChinaSearch for more papers by this authorKe Yan, Ke Yan National University of Singapore, Singapore, SingaporeSearch for more papers by this authorXiaokang Zhou, Xiaokang Zhou Shiga University, Shiga, JapanSearch for more papers by this author First published: 26 May 2022 https://doi.org/10.1002/int.22935Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Abstract Inkjet printing technology can make tiles with very rich and realistic patterns, so it is widely adopted in the ceramic industry. However, the frequent nozzle blockage and inconsistent inkjet volume by inkjet printing devices, usually leads to defects such as stayguy and color blocks in the tile surface. Especially, the stayguy in complex pattern is difficult to identify by naked eyes due to it is easily covered by complex patterns and becomes invisible, this brings great challenge to tile quality inspection. Nowadays, the machine learning is employed to address the issues. The existing machine learning methods based on hand-crafted features are capable of stayguy detection of the tiles with a simple pattern, but not applicable for complex patterns due to the interference of pattern in feature extraction. The emerging deep-learning-based methods have the potential to be applied for stayguy detection with complex patterns, but cannot achieve real-time detection due to high complexity. In this paper, a lightweight hand-crafted feature enhanced convolutional neural network (named HFENet) is proposed for rapid defect detection of tile surface. First, we perform data enhancement on the original image by global histogram equalization and image addition. Second, for the special shape of stayguy which is usually vertical, we embed the extended vertical edge detection operator (Prewitt) as convolution kernel into HFENet to extract the hand-crafted vertical edge features of the test image and eliminate the interference of complex pattern in the feature extraction. Third, the 5 × 1 asymmetric convolution kernel with a dilation rate of 2 is used to improve the utilization of convolution kernel and reduce the complexity of the model. Fourth, to reach the real-time requirements, a memory access cost-aware design is proposed, which can orchestrate the number of shallow convolution layers and deep convolution layers in feature extraction. The experiments were performed on the ceramic tile image data set captured by high-resolution industrial cameras in ceramic tile production line. Experimental results show that the HFENet outperforms the state-of-the-art semantic segmentation networks (i.e., UNet, FCN-8s, SegNet, DeepLabV3+, etc.) and lightweight networks (i.e., ShuffleNet, MobileNet, and SqueezeNet). All the code and data are available at a GitHub repository (https://github.com/RobotvisionLab/HFENet). Early ViewOnline Version of Record before inclusion in an issue RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangjun完成签到,获得积分10
4秒前
50秒前
朴实凡英发布了新的文献求助30
57秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
lixuebin完成签到 ,获得积分10
2分钟前
羞涩的寒松完成签到,获得积分10
2分钟前
FashionBoy应助周城采纳,获得10
2分钟前
2分钟前
周城发布了新的文献求助10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
Omni完成签到,获得积分10
3分钟前
周城完成签到,获得积分10
3分钟前
andrewyu完成签到,获得积分10
3分钟前
唐禹嘉完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
Kevin发布了新的文献求助10
5分钟前
lessismore发布了新的文献求助10
5分钟前
HYQ关闭了HYQ文献求助
6分钟前
CodeCraft应助科研通管家采纳,获得10
7分钟前
小蘑菇应助科研通管家采纳,获得10
7分钟前
Kevin完成签到,获得积分10
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
漂亮的秋天完成签到 ,获得积分10
8分钟前
yummm完成签到 ,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
核桃应助不安的靖柔采纳,获得10
8分钟前
核桃应助不安的靖柔采纳,获得10
8分钟前
不安的靖柔完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
whj完成签到 ,获得积分10
12分钟前
12分钟前
迟梦琪发布了新的文献求助10
12分钟前
HYQ发布了新的文献求助10
12分钟前
迟梦琪完成签到,获得积分20
12分钟前
三世完成签到 ,获得积分10
12分钟前
gszy1975完成签到,获得积分10
12分钟前
13分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127315
求助须知:如何正确求助?哪些是违规求助? 4330387
关于积分的说明 13493316
捐赠科研通 4165992
什么是DOI,文献DOI怎么找? 2283701
邀请新用户注册赠送积分活动 1284720
关于科研通互助平台的介绍 1224730