Global and local information integrated network for remaining useful life prediction

计算机科学 可解释性 降级(电信) 一般化 数据挖掘 人工智能 机器学习 数学分析 电信 数学
作者
Zian Chen,Xiaohang Jin,Ziqian Kong,Feng Wang,Zhengguo Xu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106956-106956 被引量:15
标识
DOI:10.1016/j.engappai.2023.106956
摘要

Data-driven methods routinely achieve promising results on remaining useful life prediction, but under a window-manner end-to-end paradigm, they suffer from unsatisfying generalization ability and low interpretability, as the consequence of neglecting diverse modes among the entire degradation processes of different entities. This article proposes a novel Transformer-based network, to tackle the problem by integration of global and local information. During offline training, the paired inputs containing full life and piece data are constructed, and then using cross-attention between the encoder and the decoder, the consistent position of the piece data in the full life is derived, which is directly associated with the degradation state. The designed paired inputs and model architecture ensures the strong generalization because the prediction result considering global information is adaptive to diverse degradation modes. Further, the designed cross-attention discrepancy utilizes prior knowledge of the consistent position such that similar degradation states are aligned more properly. Such a consistent position, visualized by the cross-attention distribution, is supposed to represent the intuitive relationship between degradation level and monitoring data, thus provides inherent interpretability about the prediction process. Finally, predictions of the online monitoring piece data with respect to all historical full lives with different degradation modes are aggregated to the final prediction. Extensive experiments on two datasets of turbofan and bearing show that our model provides competitive performance, especially under complicated working conditions and fault modes, achieving averagely 5.9% score reduction compared with the state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李发布了新的文献求助10
刚刚
完美立轩发布了新的文献求助10
1秒前
烂漫岱周发布了新的文献求助10
1秒前
SiyuanLi完成签到,获得积分10
1秒前
donwe完成签到,获得积分10
1秒前
科目三应助刘文耀采纳,获得10
1秒前
脑洞疼应助dy采纳,获得10
2秒前
jin发布了新的文献求助10
3秒前
情怀应助追寻荔枝采纳,获得10
3秒前
3秒前
L112233完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
zz完成签到,获得积分10
4秒前
6秒前
rong完成签到,获得积分10
6秒前
6秒前
青梅绿茶发布了新的文献求助10
6秒前
6秒前
多米发布了新的文献求助10
7秒前
7秒前
沸羊羊完成签到,获得积分10
7秒前
7秒前
小羊哥完成签到,获得积分20
8秒前
孟123发布了新的文献求助10
8秒前
8秒前
阿发发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
issl发布了新的文献求助10
9秒前
9秒前
9秒前
上官若男应助诚心爆米花采纳,获得10
10秒前
FashionBoy应助墨斗在拼搏采纳,获得10
10秒前
茴茴完成签到,获得积分10
10秒前
10秒前
10秒前
shang完成签到 ,获得积分10
10秒前
galichangfen完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479054
求助须知:如何正确求助?哪些是违规求助? 4580717
关于积分的说明 14376424
捐赠科研通 4509202
什么是DOI,文献DOI怎么找? 2471246
邀请新用户注册赠送积分活动 1457726
关于科研通互助平台的介绍 1431617