亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Examining multi-objective deep reinforcement learning frameworks for molecular design

强化学习 计算机科学 人工智能 钢筋 工程类 结构工程
作者
Aws Al-Jumaily,Muhetaer Mukaidaisi,Andrew Vu,Alain Tchagang,Yifeng Li
出处
期刊:BioSystems [Elsevier]
卷期号:232: 104989-104989 被引量:3
标识
DOI:10.1016/j.biosystems.2023.104989
摘要

Drug design and optimization are challenging tasks that call for strategic and efficient exploration of the extremely vast search space. Multiple fragmentation strategies have been proposed in the literature to mitigate the complexity of the molecular search space. From an optimization standpoint, drug design can be considered as a multi-objective optimization problem. Deep reinforcement learning (DRL) frameworks have demonstrated encouraging results in the field of drug design. However, the scalability of these frameworks is impeded by substantial training intervals and inefficient use of sample data. In this paper, we (1) examine the core principles of deep or multi-objective RL methods and their applications in molecular design, (2) analyze the performance of a recent multi-objective DRL-based and fragment-based drug design framework, named DeepFMPO, in a real-world application by incorporating optimization of protein-ligand docking affinity with varying numbers of other objectives, and (3) compare this method with a single-objective variant. Through trials, our results indicate that the DeepFMPO framework (with docking score) can achieve success, however, it suffers from training instability. Our findings encourage additional exploration and improvement of the framework. Potential sources of the framework’s instability and suggestions of further modifications to stabilize the framework are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
14秒前
Lrangrang发布了新的文献求助10
19秒前
caca完成签到,获得积分0
20秒前
27秒前
Lrangrang完成签到,获得积分10
29秒前
无问发布了新的文献求助10
31秒前
32秒前
36秒前
elliotzzz发布了新的文献求助10
36秒前
科研废柴完成签到,获得积分10
40秒前
43秒前
浮游应助wyuxilong采纳,获得10
44秒前
46秒前
丽优发布了新的文献求助10
50秒前
DPH完成签到 ,获得积分10
1分钟前
yyds完成签到,获得积分0
1分钟前
搞科研的肥宅吴完成签到,获得积分10
1分钟前
elliotzzz发布了新的文献求助10
1分钟前
1分钟前
JamesPei应助过氧化氢采纳,获得30
1分钟前
浮游应助wyuxilong采纳,获得10
1分钟前
1分钟前
1分钟前
赵月丽发布了新的文献求助30
1分钟前
1分钟前
1分钟前
浮游应助kcaj采纳,获得10
1分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
zgjc发布了新的文献求助10
2分钟前
希望天下0贩的0应助丽优采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426457
求助须知:如何正确求助?哪些是违规求助? 4540200
关于积分的说明 14171843
捐赠科研通 4457954
什么是DOI,文献DOI怎么找? 2444740
邀请新用户注册赠送积分活动 1435785
关于科研通互助平台的介绍 1413229