Lighter and faster: A multi-scale adaptive graph convolutional network for skeleton-based action recognition

计算机科学 骨架(计算机编程) 动作识别 图形 人工智能 比例(比率) 动作(物理) 模式识别(心理学) 卷积神经网络 理论计算机科学 物理 量子力学 程序设计语言 班级(哲学)
作者
Yuanjian Jiang,Hongmin Deng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 107957-107957
标识
DOI:10.1016/j.engappai.2024.107957
摘要

In recent years, graph convolutional network (GCN) has gained significant popularity in skeleton-based action recognition due to its ability to effectively model non-Euclidean data. However, most existing high-accuracy GCN-based models often utilize deep neural networks with numerous layers, resulting in increased computational costs. To address this issue, we propose a lightweight-modified multi-scale adaptive graph convolutional network (LMA-GCN) for skeleton-based action recognition, which can efficiently capture relationships between distant joints in the human skeleton and consider the uniqueness of different data samples as well while maintaining high inference speed and low complexity. In addition, a novel lightweight metric λlw is presented for effective evaluation of the model’s comprehensive performance between accuracy and lightweight. A simplified skeleton sequence representation is also presented for skeleton-based action recognition. Extensive experiments demonstrate the excellent comprehensive performance of the model LMA-GCN on three large public datasets: NTU RGB+D 60, NTU RGB+D 120, and UAV-Human. LMA-GCN obtains comparable accuracy with only 0.13M parameters and its inference speed reaches 80.2 sequences/second on one RTX 3060 GPU, which provides a simple, effective and feasible method for meeting the needs of “connected for anything, anywhere, anytime” and portable devices in internet of things (IoT) technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的铅笔完成签到 ,获得积分10
刚刚
CyberHamster完成签到,获得积分10
刚刚
SY发布了新的文献求助200
刚刚
1秒前
CipherSage应助花开四海采纳,获得10
3秒前
JamesPei应助maomaozi采纳,获得30
3秒前
inter完成签到,获得积分10
4秒前
YOGA完成签到,获得积分10
4秒前
4秒前
上官若男应助怪味痘采纳,获得10
4秒前
5秒前
CA完成签到,获得积分10
6秒前
LinYX完成签到,获得积分10
7秒前
7秒前
盛夏完成签到,获得积分10
7秒前
zyy完成签到,获得积分10
9秒前
ccc发布了新的文献求助20
10秒前
ahsisalah完成签到,获得积分10
10秒前
希望天下0贩的0应助熊二采纳,获得10
10秒前
11秒前
墨与笙完成签到,获得积分10
12秒前
Jasper应助A宇采纳,获得10
13秒前
maomaozi完成签到,获得积分20
14秒前
16秒前
guoguo发布了新的文献求助10
16秒前
sunidea完成签到,获得积分10
16秒前
桐桐应助lbc采纳,获得10
17秒前
17秒前
18秒前
申燕婷完成签到,获得积分10
18秒前
陈晓迪1992发布了新的文献求助10
19秒前
22222完成签到,获得积分10
20秒前
CIOOICO1发布了新的文献求助10
20秒前
20秒前
20秒前
从容沉鱼完成签到,获得积分20
20秒前
ZHZ发布了新的文献求助10
22秒前
华仔应助action采纳,获得10
22秒前
星辰大海应助直率的乐萱采纳,获得10
22秒前
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034