Signal propagation in complex networks

物理 网络拓扑 人工智能 复杂网络 非线性系统 封面(代数) 人工神经网络 信号(编程语言) 不断发展的网络 网络科学 信号处理 数据科学 机器学习 拓扑(电路) 电信 计算机网络 程序设计语言 计算机科学 机械工程 雷达 数学 量子力学 组合数学 万维网 工程类
作者
Peng Ji,Jiachen Ye,Yu Mu,Wei Lin,Yang Tian,Chittaranjan Hens,Matjaž Perc,Yang Tang,Jie Sun,Jürgen Kurths
出处
期刊:Physics Reports [Elsevier]
卷期号:1017: 1-96 被引量:282
标识
DOI:10.1016/j.physrep.2023.03.005
摘要

Signal propagation in complex networks drives epidemics, is responsible for information going viral, promotes trust and facilitates moral behavior in social groups, enables the development of misinformation detection algorithms, and it is the main pillar supporting the fascinating cognitive abilities of the brain, to name just some examples. The geometry of signal propagation is determined as much by the network topology as it is by the diverse forms of nonlinear interactions that may take place between the nodes. Advances are therefore often system dependent and have limited translational potential across domains. Given over two decades worth of research on the subject, the time is thus certainly ripe, indeed the need is urgent, for a comprehensive review of signal propagation in complex networks. We here first survey different models that determine the nature of interactions between the nodes, including epidemic models, Kuramoto models, diffusion models, cascading failure models, and models describing neuronal dynamics. Secondly, we cover different types of complex networks and their topologies, including temporal networks, multilayer networks, and neural networks. Next, we cover network time series analysis techniques that make use of signal propagation, including network correlation analysis, information transfer and nonlinear correlation tools, network reconstruction, source localization and link prediction, as well as approaches based on artificial intelligence. Lastly, we review applications in epidemiology, social dynamics, neuroscience, engineering, and robotics. Taken together, we thus provide the reader with an up-to-date review of the complexities associated with the network's role in propagating signals in the hope of better harnessing this to devise innovative applications across engineering, the social and natural sciences as well as to inspire future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月月小光完成签到,获得积分10
刚刚
玩命做科研完成签到 ,获得积分10
刚刚
HOU应助研友_ndvWy8采纳,获得50
1秒前
Bruce发布了新的文献求助10
1秒前
HOU应助starrism采纳,获得10
2秒前
jou完成签到,获得积分10
2秒前
完美世界应助lian采纳,获得10
2秒前
研友_Zr2mxZ完成签到,获得积分10
3秒前
JQKing完成签到,获得积分10
3秒前
再次追逐夏天完成签到,获得积分10
3秒前
ddddduan完成签到 ,获得积分10
3秒前
布丁完成签到 ,获得积分10
4秒前
QQ不需要昵称完成签到,获得积分10
4秒前
优美元枫完成签到,获得积分10
4秒前
万松辉完成签到,获得积分10
4秒前
shuo完成签到 ,获得积分10
5秒前
坦率的寻菱完成签到,获得积分10
5秒前
CodeCraft应助Winter采纳,获得10
5秒前
我爱科研完成签到,获得积分10
6秒前
ikun0000完成签到,获得积分10
6秒前
资浩阑完成签到,获得积分10
6秒前
小白发布了新的文献求助10
6秒前
HanluMa完成签到 ,获得积分10
7秒前
三三磊完成签到,获得积分10
7秒前
7秒前
蔚岚影落完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
四叶草完成签到 ,获得积分10
8秒前
失眠成协发布了新的文献求助20
8秒前
8秒前
9秒前
哈哈哈完成签到,获得积分10
10秒前
积极代芙完成签到,获得积分10
10秒前
11秒前
11秒前
JamesPei应助wnan_07采纳,获得10
12秒前
英俊的铭应助比卜不采纳,获得10
12秒前
12秒前
秀丽的初柔完成签到,获得积分10
12秒前
漫迷漫完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5523421
求助须知:如何正确求助?哪些是违规求助? 4614210
关于积分的说明 14540655
捐赠科研通 4551923
什么是DOI,文献DOI怎么找? 2494539
邀请新用户注册赠送积分活动 1475344
关于科研通互助平台的介绍 1447101