Vision Sensing-Driven Intelligent Ocular Disease Detection Using Conformer-Based Dual Fusion

计算机科学 计算机视觉 人工智能 对偶(语法数字) 传感器融合 融合 目标检测 模式识别(心理学) 艺术 语言学 哲学 文学类
作者
Zhiwei Guo,Qin Zhang,Peng Xu,Yu Shen,Chinmay Chakraborty,Osama Alfarraj,Keping Yu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3510298
摘要

The deep vision sensing has been a practical tool in early disease detection, and this work aims at an important branch of ocular disease recognition. Although a number of researchers had paid attention to it during past years, fine-grained ocular feature extraction always remains a challenge. To handle with this issue, this work benefits from comprehensive ability of the convolution-Transformer structure (Conformer), and proposes vision sensing-driven intelligent ocular disease detection using conformer-based dual fusion. On the one hand, the proposal combines technical advantages of convolution and visual Transformer to more accurately fuse local subtle features and global representation information in images. On the other hand, the proposal significantly improves accuracy and robustness of the model by optimizing depth and width. Simulation experiments on real-world ocular disease image datasets show that the proposed model exhibits higher performance in ocular disease detection compared to other methods. Numerical results show that it improves the detection accuracy by 1% to 3.7% compared to several mainstream baseline methods. This research result not only promotes the development of ocular disease detection, but also provides more reliable technical support for accurate diagnosis of ophthalmic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hideyoshi发布了新的文献求助10
1秒前
Echo发布了新的文献求助10
1秒前
暮寻屿苗完成签到 ,获得积分10
1秒前
Jasper应助YJ采纳,获得10
1秒前
月浅发布了新的文献求助10
1秒前
华仔应助likinwei采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
冰魂应助ll采纳,获得10
3秒前
甜蜜鹭洋完成签到 ,获得积分10
3秒前
banana完成签到 ,获得积分10
3秒前
VirgoYn完成签到,获得积分10
4秒前
舒心平凡发布了新的文献求助118
4秒前
Sophie完成签到,获得积分10
4秒前
哈哈发布了新的文献求助30
5秒前
终生科研徒刑完成签到 ,获得积分10
5秒前
5秒前
韩涵发布了新的文献求助10
5秒前
NexusExplorer应助长亭采纳,获得20
5秒前
5秒前
Cherry发布了新的文献求助10
5秒前
小科比发布了新的文献求助10
6秒前
愉快的哈密瓜完成签到,获得积分10
6秒前
6秒前
lancerimpp完成签到,获得积分10
7秒前
jd发布了新的文献求助10
7秒前
七月不看海完成签到,获得积分10
7秒前
8秒前
8秒前
dingz完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
11秒前
11秒前
11秒前
12秒前
环秋发布了新的文献求助10
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841327
求助须知:如何正确求助?哪些是违规求助? 3383394
关于积分的说明 10529546
捐赠科研通 3103500
什么是DOI,文献DOI怎么找? 1709307
邀请新用户注册赠送积分活动 823049
科研通“疑难数据库(出版商)”最低求助积分说明 773806