Digital phenotyping in bipolar disorder: Using longitudinal Fitbit data and personalized machine learning to predict mood symptomatology

心情 双相情感障碍 心理学 纵向数据 临床心理学 精神科 物理医学与康复 医学 计算机科学 数据挖掘
作者
Jessica M. Lipschitz,Shuwen Lin,Soroush Saghafian,Chelsea K. Pike,Katherine E. Burdick
出处
期刊:Acta Psychiatrica Scandinavica [Wiley]
卷期号:151 (3): 434-447
标识
DOI:10.1111/acps.13765
摘要

Effective treatment of bipolar disorder (BD) requires prompt response to mood episodes. Preliminary studies suggest that predictions based on passive sensor data from personal digital devices can accurately detect mood episodes (e.g., between routine care appointments), but studies to date do not use methods designed for broad application. This study evaluated whether a novel, personalized machine learning approach, trained entirely on passive Fitbit data, with limited data filtering could accurately detect mood symptomatology in BD patients. We analyzed data from 54 adults with BD, who wore Fitbits and completed bi-weekly self-report measures for 9 months. We applied machine learning (ML) models to Fitbit data aggregated over two-week observation windows to detect occurrences of depressive and (hypo)manic symptomatology, which were defined as two-week windows with scores above established clinical cutoffs for the Patient Health Questionnaire-8 (PHQ-8) and Altman Self-Rating Mania Scale (ASRM) respectively. As hypothesized, among several ML algorithms, Binary Mixed Model (BiMM) forest achieved the highest area under the receiver operating curve (ROC-AUC) in the validation process. In the testing set, the ROC-AUC was 86.0% for depression and 85.2% for (hypo)mania. Using optimized thresholds calculated with Youden's J statistic, predictive accuracy was 80.1% for depression (sensitivity of 71.2% and specificity of 85.6%) and 89.1% for (hypo)mania (sensitivity of 80.0% and specificity of 90.1%). We achieved sound performance in detecting mood symptomatology in BD patients using methods designed for broad application. Findings expand upon evidence that Fitbit data can produce accurate mood symptomatology predictions. Additionally, to the best of our knowledge, this represents the first application of BiMM forest for mood symptomatology prediction. Overall, results move the field a step toward personalized algorithms suitable for the full population of patients, rather than only those with high compliance, access to specialized devices, or willingness to share invasive data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助如梦采纳,获得10
1秒前
坚强白容完成签到,获得积分20
1秒前
1秒前
2秒前
qi完成签到,获得积分10
2秒前
李健的小迷弟应助潘qb采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
Mere Chen完成签到,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
zhendema完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Joan_89发布了新的文献求助10
4秒前
4秒前
电催化CYY完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
冰淇琳完成签到,获得积分10
5秒前
Never stall完成签到,获得积分10
6秒前
6秒前
思源应助Chloe采纳,获得10
6秒前
在水一方应助坚强白容采纳,获得10
7秒前
CodeCraft应助jou采纳,获得10
7秒前
7秒前
默默的素阴完成签到 ,获得积分10
7秒前
7秒前
啦啦啦发布了新的文献求助10
8秒前
9秒前
王大京发布了新的文献求助10
10秒前
红桃小六发布了新的文献求助10
10秒前
yaoyao123456发布了新的文献求助10
10秒前
10秒前
科研通AI5应助xiaoxiao采纳,获得10
11秒前
纪震宇发布了新的文献求助10
11秒前
zzzllove发布了新的文献求助10
11秒前
CYJ发布了新的文献求助10
11秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828607
求助须知:如何正确求助?哪些是违规求助? 3371080
关于积分的说明 10466123
捐赠科研通 3090923
什么是DOI,文献DOI怎么找? 1700600
邀请新用户注册赠送积分活动 817945
科研通“疑难数据库(出版商)”最低求助积分说明 770618