材料科学
激光器
光电子学
连续波
小型化
光学
千分尺
激光泵浦
钙钛矿(结构)
衍射
纳米技术
物理
化学工程
工程类
作者
Jiepeng Song,Qiuyu Shang,Xinyi Deng,Yin Liang,Chun Li,Xinfeng Liu,Qihua Xiong,Qing Zhang
标识
DOI:10.1002/adma.202302170
摘要
Continuous-wave (CW) pumped lasers with device areas below 1 µm2 constitute a key step to meeting the energy efficiency requirement for on-chip optical communications. However, a debate about whether a sub-micrometer device size and low threshold can be simultaneously satisfied has persisted owing to insurmountable radiation losses when approaching the optical diffraction limit. Herein, a record-small CW optically pumped perovskite laser with a device area of 0.65 µm2 is demonstrated. The thresholds of sub-micrometer lasers can be found lower than those of several-micrometer counterparts, and are ascribed to the enlarged group refractive index and modal confinement resulting from the enhanced exciton-photon coupling. Moreover, the operation temperature is elevated to 150 K through the reduction in heat generation. These findings unveil the potential of exciton-polaritons in laser miniaturization, providing an alternative for developing low-threshold semiconductor lasers without artificial optical cavities, to approach the optical diffraction limit.
科研通智能强力驱动
Strongly Powered by AbleSci AI