Feature Selection for Cross-Scene Hyperspectral Image Classification Using Cross-Domain I-ReliefF

计算机科学 高光谱成像 人工智能 特征选择 模式识别(心理学) 特征(语言学) 冗余(工程) 特征提取 计算机视觉 语言学 操作系统 哲学
作者
Chengjie Zhang,Minchao Ye,Lei Ling,Yuntao Qian
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 5932-5949 被引量:16
标识
DOI:10.1109/jstars.2021.3086151
摘要

In the classification of hyperspectral images (HSIs), too many spectral bands (features) cause feature redundancy, resulting in a reduction in classification accuracy. In order to solve this problem, it is a good method to use feature selection to search for a feature subset which is useful for classification. Iterative ReliefF (I-ReliefF) is a traditional single-scene-based algorithm, and it has good convergence, efficiency, and can handle feature selection problems well in most scenes. Most single-scene-based feature selection methods perform poorly in some scenes (domains) which lack labeled samples. As the number of HSIs increases, the cross-scene feature selection algorithms which utilize two scenes to deal with the high dimension and low sample size problem are more and more desired. The spectral shift is a common problem in cross-scene feature selection. It leads to difference in spectral feature distribution between source and target scenes even though these scenes are highly similar. To solve the above problems, we extend I-ReliefF to a cross-scene algorithm: cross-domain I-ReliefF (CDIRF). CDIRF includes a cross-scene rule to update feature weights, which considers the separability of different land-cover classes and the consistency of the spectral features between two scenes. So CDIRF can effectively utilize the information of source scene to improve the performance of feature selection in target scene. The experiments are conducted on three cross-scene datasets for verification, and the experimental results demonstrate the superiority and feasibility of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Komorebi完成签到,获得积分10
1秒前
clathrin完成签到,获得积分10
2秒前
3秒前
野良应助dasfdufos采纳,获得10
3秒前
ycp完成签到,获得积分10
4秒前
沫柠完成签到 ,获得积分10
4秒前
科研通AI5应助qiulong采纳,获得10
5秒前
zb发布了新的文献求助10
7秒前
暖暖完成签到 ,获得积分10
12秒前
独孤完成签到 ,获得积分10
13秒前
细腻草莓完成签到,获得积分10
13秒前
19秒前
Fazie完成签到 ,获得积分10
21秒前
cxw关注了科研通微信公众号
22秒前
zho应助AshEnder采纳,获得10
23秒前
LL完成签到,获得积分10
23秒前
爱笑海云发布了新的文献求助10
26秒前
JD完成签到 ,获得积分10
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
Leif应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
科研助手6应助科研通管家采纳,获得10
31秒前
科研通AI5应助888采纳,获得10
31秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
31秒前
科研助手6应助科研通管家采纳,获得10
31秒前
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
李爱国应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776299
求助须知:如何正确求助?哪些是违规求助? 3321743
关于积分的说明 10207616
捐赠科研通 3037087
什么是DOI,文献DOI怎么找? 1666533
邀请新用户注册赠送积分活动 797544
科研通“疑难数据库(出版商)”最低求助积分说明 757870