Garbage classification system based on improved ShuffleNet v2

垃圾 垃圾收集 计算机科学 领域(数学) 一致性(知识库) 资源(消歧) 推论 人工智能 机器学习 数据库 数据挖掘 计算机网络 数学 程序设计语言 纯数学
作者
Zhichao Chen,Jie Yang,Lifang Chen,Haining Jiao
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:178: 106090-106090 被引量:123
标识
DOI:10.1016/j.resconrec.2021.106090
摘要

Garbage classification technology is not only an important basis for the harmless treatment of waste and resource recovery, but also the inevitable trend of social development. The current garbage classification methods rely on manual classification in the garbage collection stage, and it is difficult to achieve satisfying results in consistency, stability, and sanitary conditions. For this reason, this study designs and develops a garbage classification system based on deep learning that can recognize and recycle domestic garbage. Focusing on the problems of low accuracy and poor real-time performance, a lightweight garbage classification model GCNet (Garbage Classification Network) is proposed. GCNet contains three improvements on ShuffleNet v2, including the design of parallel mixed attention mechanism (PMAM), the use of new activation functions, and transfer learning. The experimental results show that the average accuracy of GCNet on the self-built dataset is 97.9%, the amount of model parameters is only 1.3M, the single inference time on Raspberry Pi 4B is about 105ms, and the classification system needs only 0.88 seconds to complete the classification and collection of a single object. The method proposed in this paper is an effective attempt at machine vision in garbage classification and resource recovery. With the improvement of technology, it will effectively promote academic exploration and engineering application in the field of resources and environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkkk发布了新的文献求助10
1秒前
2秒前
研友_8y2G0L发布了新的文献求助10
3秒前
WJ发布了新的文献求助10
3秒前
4秒前
SYLH应助贰什柒采纳,获得10
4秒前
5秒前
7秒前
雪天的阳发布了新的文献求助10
8秒前
shisujuan发布了新的文献求助10
8秒前
慕青应助付艳采纳,获得10
10秒前
orixero应助WJ采纳,获得10
13秒前
14秒前
15秒前
biopig应助贰什柒采纳,获得10
17秒前
18秒前
顺心凡之完成签到,获得积分10
18秒前
思源应助wang采纳,获得10
18秒前
火星上的天蓝完成签到,获得积分20
18秒前
爆米花应助极品小亮采纳,获得10
20秒前
路路有为完成签到 ,获得积分10
21秒前
冯岗发布了新的文献求助10
21秒前
spoon1026发布了新的文献求助10
22秒前
22秒前
悠然小灏发布了新的文献求助10
23秒前
都兰发布了新的文献求助10
24秒前
852应助给我个二硫碘化钾采纳,获得10
24秒前
乐观猕猴桃完成签到 ,获得积分10
24秒前
25秒前
25秒前
orixero应助轻松无剑采纳,获得10
26秒前
务实思烟完成签到,获得积分20
27秒前
科研通AI5应助john采纳,获得10
28秒前
向阳生长的花完成签到 ,获得积分10
28秒前
28秒前
Seyon完成签到,获得积分10
28秒前
失眠醉易应助肉肉采纳,获得20
28秒前
29秒前
spoon1026完成签到,获得积分10
30秒前
务实思烟发布了新的文献求助10
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349