Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids

声子散射 散射 声子 热导率 凝聚态物理 材料科学 热电材料
作者
Tianli Feng,Lucas Lindsay,Xiulin Ruan
出处
期刊:Physical review 卷期号:96 (16) 被引量:358
标识
DOI:10.1103/physrevb.96.161201
摘要

For decades, the three-phonon scattering process has been considered to govern thermal transport in solids, while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However, recent quantitative calculations of three-phonon scattering have often shown a significant overestimation of thermal conductivity as compared to experimental values. In this Rapid Communication we show that four-phonon scattering is generally important in solids and can remedy such discrepancies. For silicon and diamond, the predicted thermal conductivity is reduced by 30% at 1000 K after including four-phonon scattering, bringing predictions in excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material, zinc-blende BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly strong as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering reduces the predicted thermal conductivity from 2200 to 1400 W/m K at room temperature. The reduction at 1000 K is 60%. We also find that optical phonon scattering rates are largely affected, being important in applications such as phonon bottlenecks in equilibrating electronic excitations. Recognizing that four-phonon scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess the significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase space. Our work clears the decades-long fundamental question of the significance of higher-order scattering, and points out ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助两篇sci采纳,获得10
2秒前
大胆的半青完成签到 ,获得积分10
6秒前
7秒前
7秒前
阿胡阿完成签到,获得积分10
8秒前
宗磬完成签到,获得积分10
9秒前
10秒前
两篇sci完成签到,获得积分10
12秒前
吴宵发布了新的文献求助10
13秒前
17秒前
24秒前
Debbie完成签到 ,获得积分10
27秒前
29秒前
洋葱发布了新的文献求助10
30秒前
情怀应助科研通管家采纳,获得10
31秒前
32秒前
所所应助科研通管家采纳,获得10
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
柯一一应助科研通管家采纳,获得20
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
柯一一应助科研通管家采纳,获得10
32秒前
隐形曼青应助科研通管家采纳,获得10
32秒前
星辰大海应助阿斯蒂芬采纳,获得10
32秒前
科目三应助科研通管家采纳,获得10
32秒前
SOLOMON应助科研通管家采纳,获得20
32秒前
Lucas应助ZHANG采纳,获得10
32秒前
兴奋觅海完成签到,获得积分10
32秒前
32秒前
LiuShenglan完成签到,获得积分10
33秒前
35秒前
笑点低的以亦完成签到,获得积分20
37秒前
haroro关注了科研通微信公众号
37秒前
37秒前
安致远发布了新的文献求助30
38秒前
老鼠咕噜应助刘刘采纳,获得10
39秒前
葡萄啵啵675完成签到,获得积分10
39秒前
深情安青应助HHHH采纳,获得10
40秒前
42秒前
42秒前
Fung完成签到,获得积分10
42秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2394848
求助须知:如何正确求助?哪些是违规求助? 2098282
关于积分的说明 5288039
捐赠科研通 1825806
什么是DOI,文献DOI怎么找? 910303
版权声明 559972
科研通“疑难数据库(出版商)”最低求助积分说明 486519