Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids

声子散射 散射 声子 热导率 凝聚态物理 材料科学 热电材料 散射率 物理 光学 复合材料
作者
Tianli Feng,Lucas Lindsay,Xiulin Ruan
出处
期刊:Physical review [American Physical Society]
卷期号:96 (16) 被引量:476
标识
DOI:10.1103/physrevb.96.161201
摘要

For decades, the three-phonon scattering process has been considered to govern thermal transport in solids, while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However, recent quantitative calculations of three-phonon scattering have often shown a significant overestimation of thermal conductivity as compared to experimental values. In this Rapid Communication we show that four-phonon scattering is generally important in solids and can remedy such discrepancies. For silicon and diamond, the predicted thermal conductivity is reduced by 30% at 1000 K after including four-phonon scattering, bringing predictions in excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material, zinc-blende BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly strong as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering reduces the predicted thermal conductivity from 2200 to 1400 W/m K at room temperature. The reduction at 1000 K is 60%. We also find that optical phonon scattering rates are largely affected, being important in applications such as phonon bottlenecks in equilibrating electronic excitations. Recognizing that four-phonon scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess the significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase space. Our work clears the decades-long fundamental question of the significance of higher-order scattering, and points out ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WTaMi完成签到 ,获得积分10
1秒前
温伊完成签到,获得积分10
2秒前
CCL完成签到,获得积分10
2秒前
yuiip完成签到 ,获得积分10
3秒前
所所应助可口可乐采纳,获得10
5秒前
make217完成签到 ,获得积分10
5秒前
我是大兴发布了新的文献求助10
6秒前
小岚花完成签到 ,获得积分10
6秒前
红薯干完成签到,获得积分10
6秒前
7秒前
故酒应助斯文的傲珊采纳,获得10
8秒前
CodeCraft应助醉熏的丹秋采纳,获得10
8秒前
沫荔完成签到 ,获得积分10
10秒前
10秒前
修辞完成签到 ,获得积分10
10秒前
10秒前
tt发布了新的文献求助10
11秒前
12秒前
我是大兴完成签到,获得积分10
13秒前
天天开心完成签到 ,获得积分10
14秒前
RussHu完成签到,获得积分10
14秒前
千千完成签到,获得积分10
14秒前
14秒前
Serein发布了新的文献求助10
15秒前
万能图书馆应助个性湘采纳,获得50
16秒前
yud完成签到 ,获得积分10
17秒前
可口可乐发布了新的文献求助10
17秒前
19秒前
虹虹完成签到 ,获得积分10
20秒前
夏夜完成签到 ,获得积分10
20秒前
坚定的小蘑菇完成签到 ,获得积分10
21秒前
zzz完成签到,获得积分10
22秒前
GTRK完成签到,获得积分10
22秒前
23秒前
千陽完成签到 ,获得积分10
24秒前
zhiwei完成签到 ,获得积分10
24秒前
Orchid发布了新的文献求助10
25秒前
26秒前
天璇完成签到,获得积分10
26秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726