Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?

医学 列线图 无线电技术 神经组阅片室 放射科 逻辑回归 腺癌 淋巴结 转移 阶段(地层学) 接收机工作特性 核医学 肿瘤科 病理 内科学 癌症 神经学 古生物学 精神科 生物
作者
Xiang Wang,Xingyu Zhao,Qiong Li,Wei Xia,Zhaohui Peng,Rui Zhang,Qingchu Li,Junming Jian,Wei Wang,Yuguo Tang,Shiyuan Liu,Xin Gao
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:29 (11): 6049-6058 被引量:150
标识
DOI:10.1007/s00330-019-06084-0
摘要

To evaluate the efficiency of radiomics model on CT images of intratumoral and peritumoral lung parenchyma for preoperative prediction of lymph node (LN) metastasis in clinical stage T1 peripheral lung adenocarcinoma patients. Three hundred sixty-six peripheral lung adenocarcinoma patients with clinical stage T1 were evaluated using five CT scanners. For each patient, two volumes of interest (VOIs) on CT were defined as the gross tumor volume (GTV) and the peritumoral volume (PTV, 1.5 cm around the tumor). One thousand nine hundred forty-six radiomic features were obtained from each VOI, and then refined for reproducibility and redundancy. The refined features were investigated for usefulness in building radiomic signatures by mRMR feature ranking method and LASSO classifier. Multivariable logistic regression analysis was used to develop a radiomic nomogram incorporating the radiomic signature and clinical parameters. The prediction performance was evaluated on the validation cohort. The radiomic signatures using the features of GTV and PTV showed a good ability in predicting LN metastasis with an AUC of 0.829 (95% CI, 0.745–0.913) and 0.825 (95% CI, 0.733–0.918), respectively. By incorporating the features of GTV and PTV, the AUC of radiomic signature increased to 0.843 (95% CI, 0.770–0.916). The AUC of radiomic nomogram was 0.869 (95% CI, 0.800–0.938). Radiomic signatures of GTV and PTV both had a good prediction ability in the prediction of LN metastasis, and there is no significant difference of AUC between the two groups. The proposed nomogram can be conveniently used to facilitate the preoperative prediction of LN metastasis in T1 peripheral lung adenocarcinomas. • Radiomics from peritumoral lung parenchyma increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT. • A radiomic nomogram was developed and validated to predict LN metastasis. • Different scan parameters on CT showed that radiomics signature had good predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狸宝的小果子完成签到 ,获得积分10
刚刚
zhaoxu发布了新的文献求助10
1秒前
开心发卡发布了新的文献求助10
2秒前
gaoyi12356完成签到,获得积分10
2秒前
啊嘞嘞完成签到,获得积分10
2秒前
MM完成签到,获得积分10
2秒前
2秒前
3秒前
马马发布了新的文献求助10
4秒前
蒋时晏应助文瑶琪采纳,获得30
4秒前
5秒前
正直的如凡完成签到,获得积分10
5秒前
5秒前
zxy666完成签到,获得积分10
6秒前
研友_8KAP5n完成签到,获得积分10
6秒前
如歌发布了新的文献求助10
7秒前
Akim应助大方研究生采纳,获得10
8秒前
8秒前
9秒前
科研通AI5应助ccer采纳,获得10
9秒前
阿曾完成签到 ,获得积分10
9秒前
zxy666发布了新的文献求助10
9秒前
Orange应助gaoyi12356采纳,获得10
10秒前
NexusExplorer应助马马采纳,获得10
11秒前
英姑应助单纯的手机采纳,获得10
12秒前
Litm完成签到 ,获得积分10
12秒前
12秒前
孟宪岗完成签到,获得积分10
13秒前
13秒前
13秒前
CYT发布了新的文献求助10
13秒前
隐身小怪兽完成签到 ,获得积分10
14秒前
莓莓崽完成签到,获得积分10
14秒前
steambun完成签到,获得积分10
15秒前
15秒前
老程完成签到,获得积分10
15秒前
16秒前
小孙完成签到,获得积分10
16秒前
知性的颜完成签到,获得积分10
16秒前
小虫学长应助爱笑夏烟采纳,获得10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813