Single Cell Resolution Mapping of Hematopoietic Stem and Progenitor Cell States throughout Human Life

祖细胞 干细胞 脐带血 免疫学 生物 造血 胚胎干细胞 血细胞 细胞生物学 骨髓 川地34 遗传学 基因
作者
Hojun Li,Vincent L. Butty,Guinevere Connelly,Vivian Morris,George Q. Daley,Jennifer Whangbo,Edroaldo Lummertz da Rocha,R. Grant Rowe
出处
期刊:Blood [Elsevier BV]
卷期号:136 (Supplement 1): 31-31
标识
DOI:10.1182/blood-2020-136380
摘要

The hematopoietic system continuously generates and replenishes the supply of circulating blood cells from embryonic life throughout the entirety of human lifespan. Studies in mouse development have shown that the repertoire of mature blood cell types produced changes dramatically during development and aging, with hematopoietic stem and progenitor cells (HSPCs) adapting their output to meet age-specific physiologic needs. In humans, it is presumed that age-dependent changes in the production of mature blood lineages underlie the tendency of blood disorders to skew toward certain ages of onset. The observations that mature cell output changes throughout life but mechanisms of terminal hematopoietic differentiation within each lineage remain consistent suggest that age-specific hematopoietic states are programmed at the level of HSPCs. Although the developmental changes occurring in mouse hematopoiesis are well documented, the specific changes in human HSPC ontogeny occurring during prenatal development and postnatal aging from newborn, through childhood, and into adulthood are completely unknown. We hypothesized that temporal changes in human hematopoiesis are mediated by age-specific, occasionally transient, HSPC states and that mechanisms of HSPC lineage commitment change over time in order to meet the changing physiologic demands of the developing and aging human. To test this hypothesis, we comprehensively profiled human HSPC cell states from human fetal hematopoiesis through adulthood using single cell RNA sequencing (scRNAseq). We obtained CD34+ HSPCs from 14 different human donors covering a range of ages from first and second trimester fetal liver, umbilical cord blood, and pediatric and adult bone marrow. We obtained high quality sequencing data on a total of 38,873 individual HSPCs after filtering out apoptotic cells, hepatocytes, stromal cells, and endothelial cells. We then identified differentially expressed genes and performed dimensionality reduction and uniform manifold approximation and projection followed by Louvain clustering to identify 32 distinct cell types encompassing primitive stem and multipotent progenitor cells as well as committed progenitors in the myeloid, erythroid and lymphoid lineages. We found age-specific alterations in hematopoietic differentiation trajectories, particularly in the myeloid lineages. Additionally, we discovered an HSC, emerging in mid-gestation and diminishing at birth, with a characteristic immunophenotype and megakaryocyte (Meg) differentiation bias. Differential gene expression analysis of the Meg-biased fetal HSC identified increased expression of the MYB transcription factor relative to other HSCs, potentially illuminating a mechanistic role for MYB in driving megakaryocyte-erythroid progenitor (MEP) differentiation of fetal HSCs, that is distinct from the role of MYB in conferring erythroid differentiation bias at the MEP stage itself. Finally, we used this atlas of human developmental hematopoiesis to map lineage commitment and progenitor states in leukemia, highlighting the translational applicability of this resource. In summary, we have compiled the first comprehensive atlas of HSPCs across human development and aging. This resource allowed us to identify age-specific differentiation trajectories in human hematopoiesis and enabled identification of a Meg-biased fetal-specific HSC. Our research reveals novel mechanisms of maturation and aging of the human hematopoietic system, uncovers transient HSPC states and differentiation trajectories, and establishes a framework for interrogating the differentiation and maturation states of human leukemias that can likely be applied to other blood diseases. As a resource, we expect that this atlas will broadly impact the study of human hematopoietic development and aging, developmental immunology, and the pathophysiology of age-biased blood diseases. Disclosures No relevant conflicts of interest to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hou123456完成签到,获得积分10
1秒前
海茵发布了新的文献求助10
1秒前
天天快乐应助余生采纳,获得10
3秒前
321654发布了新的文献求助10
4秒前
lshao完成签到 ,获得积分10
4秒前
5秒前
Cheng完成签到 ,获得积分10
5秒前
一颗西柚完成签到 ,获得积分10
6秒前
罗沫沫完成签到,获得积分10
7秒前
英姑应助moya采纳,获得10
8秒前
小林神完成签到,获得积分10
8秒前
柠檬百香果完成签到,获得积分10
9秒前
DaSheng发布了新的文献求助10
9秒前
su完成签到 ,获得积分10
10秒前
321完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
Jerry完成签到,获得积分10
15秒前
访云发布了新的文献求助10
15秒前
xmz应助周小鱼采纳,获得10
16秒前
科研通AI5应助Tttting采纳,获得10
17秒前
321654完成签到,获得积分10
18秒前
海茵完成签到,获得积分10
18秒前
19秒前
大淘完成签到,获得积分10
20秒前
在水一方应助叶子采纳,获得10
22秒前
舟遥遥完成签到,获得积分10
22秒前
Mr兔仙森发布了新的文献求助20
23秒前
hu完成签到,获得积分10
23秒前
23秒前
25秒前
qi0625完成签到,获得积分10
26秒前
26秒前
一朵小兰花完成签到 ,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
iNk应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782897
求助须知:如何正确求助?哪些是违规求助? 3328185
关于积分的说明 10235295
捐赠科研通 3043240
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759033