加速度
粒子群优化
惯性
水准点(测量)
趋同(经济学)
算法
数学优化
指数函数
多群优化
控制理论(社会学)
计算机科学
数学
物理
人工智能
数学分析
控制(管理)
大地测量学
经典力学
经济增长
经济
地理
作者
Wanli Yang,Xueting Zhou,Yulan Luo
出处
期刊:Journal of physics
[IOP Publishing]
日期:2021-02-01
卷期号:1754 (1): 012195-012195
被引量:9
标识
DOI:10.1088/1742-6596/1754/1/012195
摘要
Abstract Because of the drawbacks of easy premature in initial iteration stages, the low convergence accuracy and slowed-down converging speed in final stages of the particle swarm optimization (PSO)algorithm therefore the simple particle swarm optimization (SPSO) algorithm with dynamic changes of inertia weight and acceleration coefficients (IASPSO) has been put forward. IASPSO algorithm provides a parameter optimization strategy by using exponential decreasing inertia weight and sine function acceleration coefficient to improve global exploration capacity. Simulation tests are carried out with classic Benchmark test functions. The simulation results show that compared with other PSO algorithms, IASPSO algorithm can converge to the better global optimization with a fast converging velocity and high convergence precision, promoting the optimization performance of the algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI