Reducing streak artifacts in computed tomography via sparse representation in coupled dictionaries

条纹 工件(错误) 稀疏逼近 人工智能 块(置换群论) 计算机科学 迭代重建 代表(政治) 模式识别(心理学) 计算机视觉 图像质量 图像(数学) 算法 数学 光学 物理 政治 法学 政治学 几何学
作者
Davood Karimi,Rabab Ward
出处
期刊:Medical Physics [Wiley]
卷期号:43 (3): 1473-1486 被引量:14
标识
DOI:10.1118/1.4942376
摘要

Purpose: Reducing the number of acquired projections is a simple and efficient way to reduce the radiation dose in computed tomography (CT). Unfortunately, this results in streak artifacts in the reconstructed images that can significantly reduce their diagnostic value. This paper presents a novel algorithm for suppressing these artifacts in 3D CT. Methods: The proposed algorithm is based on the sparse representation of small blocks of 3D CT images in learned overcomplete dictionaries. It learns two dictionaries, the first dictionary ( D a ) is for artifact‐full images that have been reconstructed from a small number (approximately 100) of projections. The other dictionary ( D c ) is for clean artifact‐free images. The core idea behind the proposed algorithm is to relate the representation coefficients of an artifact‐full block in D a to the representation coefficients of the corresponding artifact‐free block in D c . The relation between these coefficients is modeled with a linear mapping. The two dictionaries and the linear relation between the coefficients are learned simultaneously from the training data. To remove the artifacts from a test image, small blocks are extracted from this image and their sparse representation is computed in D a . The linear map is then used to compute the corresponding coefficients in D c , which are then used to produce the artifact‐suppressed blocks. Results: The authors apply the proposed algorithm on real cone‐beam CT images. Their results show that the proposed algorithm can effectively suppress the artifacts and substantially improve the quality of the reconstructed images. The images produced by the proposed algorithm have a higher quality than the images reconstructed by the FDK algorithm from twice as many projections. Conclusions: The proposed sparsity‐based algorithm can be a valuable tool for postprocessing of CT images reconstructed from a small number of projections. Therefore, it has the potential to be an effective tool for low‐dose CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狐狸完成签到,获得积分10
1秒前
感动雁易完成签到,获得积分10
2秒前
赵凤文发布了新的文献求助10
2秒前
2秒前
YZMING发布了新的文献求助10
4秒前
彭于晏应助玉玉鼠采纳,获得10
4秒前
4秒前
5秒前
小蘑菇应助机智的阿振采纳,获得10
5秒前
背后的傥完成签到,获得积分10
5秒前
5秒前
kid完成签到,获得积分10
5秒前
6秒前
7秒前
喵呜发布了新的文献求助10
8秒前
玲子冰蛋完成签到,获得积分10
8秒前
9秒前
繁花完成签到,获得积分10
9秒前
123发布了新的文献求助10
10秒前
swzzaf完成签到,获得积分10
10秒前
10秒前
CipherSage应助z369采纳,获得10
10秒前
XiaohuLee发布了新的文献求助10
10秒前
阮梽珅发布了新的文献求助10
11秒前
乐乐应助wujiachen_1999采纳,获得10
11秒前
llzuo发布了新的文献求助10
11秒前
旧辞应助小约翰采纳,获得10
12秒前
13秒前
中大奖的英姑完成签到,获得积分10
13秒前
jcae123完成签到,获得积分10
13秒前
橘子完成签到 ,获得积分10
13秒前
hello小鹿完成签到,获得积分10
14秒前
无辜的夏真完成签到,获得积分10
14秒前
万能图书馆应助加百莉采纳,获得10
15秒前
zyw0532发布了新的文献求助200
15秒前
文献求助完成签到,获得积分10
15秒前
阮梽珅完成签到,获得积分10
16秒前
16秒前
科研通AI5应助zzyyzz采纳,获得10
17秒前
脑洞疼应助123采纳,获得10
18秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840180
求助须知:如何正确求助?哪些是违规求助? 3382372
关于积分的说明 10523124
捐赠科研通 3101845
什么是DOI,文献DOI怎么找? 1708440
邀请新用户注册赠送积分活动 822478
科研通“疑难数据库(出版商)”最低求助积分说明 773330