Machine Learning-Based 28-Day Mortality Prediction Model for Elderly Neurocritically Ill Patients

计算机科学 机器学习 人工智能 医学
作者
Jia Yuan,Jiong Xiong,Jinfeng Yang,Qi Dong,Yin Wang,Y. Cheng,Xianjun Chen,Ying Liu,Chuan Xiao,Jian Tao,Shuangzi Lizhang,Yangzi Liujiao,Qimin Chen,Feng Shen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:260: 108589-108589
标识
DOI:10.1016/j.cmpb.2025.108589
摘要

The growing population of elderly neurocritically ill patients highlights the need for effective prognosis prediction tools. This study aims to develop and validate machine learning (ML) models for predicting 28-day mortality in intensive care units (ICUs). Data were extracted from the Medical Information Mart for Intensive Care IV(MIMIC-IV) database, focusing on elderly neurocritical ill patients with ICU stays ≥ 24 h. The cohort was split into 70 % for training and 30 % for internal validation. We analyzed 58 variables, including demographics, vital signs, medications, lab results, comorbidities, and medical scores, using Lasso regression to identify predictors of 28-day mortality. Seven ML algorithms were evaluated, and the best model was validated with data from Guizhou Medical University Affiliated Hospital. A log-rank test was used to assess survival differences in Kaplan-Meier curves. Shapley Additive Explanations (SHAP) were used to interpret the best model, while subgroup analysis identified variations in model performance across different populations. The study included 1,773 elderly neurocritically ill patients, with a 28-day mortality rate of 28.6 %. The Light Gradient Boosting Machine (LightGBM) outperformed other models, achieving an area under the curve (AUC) of 0.896 in internal validation and 0.812 in external validation. Kaplan-Meier analysis showed that higher LightGBM prediction scores correlated with lower survival probabilities. Key predictors identified through SHAP analysis included partial pressure of arterial carbon dioxide (PaCO2), Acute physiology and chronic health evaluation II (APACHE II), white blood cell count, age, and lactate. The LightGBM model demonstrated consistent performance across various subgroups. The LightGBM model effectively predicts 28-day mortality risk in elderly neurocritically ill patients, aiding clinicians in management and resource allocation. Its reliable performance across diverse subgroups underscores its clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花已烬完成签到,获得积分10
刚刚
xiaowang发布了新的文献求助10
1秒前
王若凡发布了新的文献求助10
1秒前
Shale完成签到,获得积分10
1秒前
FashionBoy应助蝶步韶华采纳,获得10
1秒前
科研通AI5应助杨冰采纳,获得10
2秒前
Apr9810h完成签到 ,获得积分10
3秒前
4秒前
ldy完成签到,获得积分10
4秒前
朴素绿真完成签到,获得积分10
4秒前
wang完成签到,获得积分10
5秒前
jerry完成签到 ,获得积分10
5秒前
土豆完成签到,获得积分10
5秒前
冰魂应助科研达人采纳,获得10
7秒前
为科研奋斗完成签到,获得积分10
7秒前
Wqhao完成签到,获得积分10
7秒前
白茶完成签到,获得积分10
7秒前
hky完成签到 ,获得积分10
7秒前
dafwfwaf发布了新的文献求助10
8秒前
杨小羊完成签到,获得积分10
8秒前
思源应助stayreal采纳,获得10
9秒前
杀殿完成签到 ,获得积分10
9秒前
璃月品茶钟离完成签到,获得积分10
9秒前
potato_bel完成签到,获得积分10
10秒前
10秒前
飘逸蘑菇完成签到 ,获得积分10
11秒前
找文献呢完成签到,获得积分10
11秒前
虚幻的涵柏完成签到,获得积分10
11秒前
12秒前
12秒前
lsh完成签到,获得积分10
13秒前
皮汤汤完成签到 ,获得积分10
13秒前
helllxi完成签到,获得积分10
13秒前
Foxjker完成签到 ,获得积分10
13秒前
wes完成签到 ,获得积分10
14秒前
鲤鱼梦柳完成签到 ,获得积分10
15秒前
16秒前
MOMO完成签到 ,获得积分10
17秒前
我不困发布了新的文献求助10
17秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784869
求助须知:如何正确求助?哪些是违规求助? 3330150
关于积分的说明 10244663
捐赠科研通 3045550
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800627
科研通“疑难数据库(出版商)”最低求助积分说明 759577