Intelligent information systems for power grid fault analysis by computer communication technology

计算机科学 电网 断层(地质) 网格 功率(物理) 分布式计算 数学 物理 几何学 量子力学 地震学 地质学
作者
Ronglong Xu,Jing Zhang
出处
期刊:Energy Informatics [Springer Nature]
卷期号:8 (1)
标识
DOI:10.1186/s42162-024-00465-6
摘要

This study aims to enhance the intelligence level of power grid fault analysis to address increasingly complex fault scenarios and ensure grid stability and security. To this end, an intelligent information system for power grid fault analysis, leveraging improved computer communication technology, is proposed and developed. The system incorporates a novel fault diagnosis model, combining advanced communication technologies such as distributed computing, real-time data transmission, cloud computing, and big data analytics, to establish a multi-layered information processing architecture for grid fault analysis. Specifically, this study introduces a fusion model integrating Transformer self-attention mechanisms with graph neural networks (GNNs) based on conventional fault diagnosis techniques. GNNs capture the complex relationships between different nodes within the grid topology, effectively identifying power transmission characteristics and fault propagation paths across grid nodes. The Transformer's self-attention mechanism processes time-series operational data from the grid, enabling precise identification of temporal dependencies in fault characteristics. To improve system response speed, edge computing moves portions of fault data preprocessing and analysis to edge nodes near data sources, significantly reducing transmission latency and enhancing real-time diagnosis capability. Experimental results demonstrate that the proposed model achieves superior diagnostic performance across various fault types (e.g., short circuits, overloads, equipment failures) in simulation scenarios. The system achieves a fault identification and location accuracy of 99.2%, an improvement of over 10% compared to traditional methods, with an average response time of 85 milliseconds, approximately 43% faster than existing technologies. Moreover, the system exhibits strong robustness in complex scenarios, with an average fault prediction error rate of just 1.1% across multiple simulations. This study provides a novel solution for intelligent power grid fault diagnosis and management, establishing a technological foundation for smart grid operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zsx完成签到,获得积分10
刚刚
surain发布了新的文献求助10
2秒前
swing完成签到,获得积分10
2秒前
阿景发布了新的文献求助10
2秒前
略略略发布了新的文献求助10
3秒前
科研通AI5应助困困采纳,获得10
3秒前
充电宝应助李善聪采纳,获得10
4秒前
4秒前
郑旭辉发布了新的文献求助20
5秒前
仁济泌外完成签到,获得积分10
6秒前
海绵小方块完成签到,获得积分10
7秒前
7秒前
阿泽完成签到 ,获得积分10
11秒前
surain完成签到,获得积分10
11秒前
所所应助lin采纳,获得10
12秒前
12秒前
汉堡包应助qq采纳,获得10
12秒前
guoguo完成签到,获得积分20
12秒前
殊桐完成签到,获得积分10
13秒前
14秒前
略略略完成签到,获得积分10
14秒前
16秒前
sadascaqwqw完成签到 ,获得积分10
16秒前
orixero应助多肉葡萄采纳,获得10
16秒前
时光宝石一次完成签到,获得积分10
17秒前
科研通AI5应助阿景采纳,获得10
17秒前
Johnlian完成签到 ,获得积分10
17秒前
18秒前
19秒前
牛阳雨发布了新的文献求助10
19秒前
19秒前
大气沛容完成签到,获得积分10
20秒前
20秒前
JamesPei应助FeversKim采纳,获得10
20秒前
20秒前
晚灯君完成签到 ,获得积分10
21秒前
田所浩二完成签到 ,获得积分10
21秒前
21秒前
22秒前
福同学完成签到,获得积分10
23秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825282
求助须知:如何正确求助?哪些是违规求助? 3367593
关于积分的说明 10446446
捐赠科研通 3086915
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816717
科研通“疑难数据库(出版商)”最低求助积分说明 769937