Interpretable CT radiomics model for invasiveness prediction in patients with ground-glass nodules

医学 无线电技术 逻辑回归 Lasso(编程语言) 置信区间 可解释性 放射科 人工智能 接收机工作特性 队列 核医学 机器学习 内科学 计算机科学 万维网
作者
Minping Hong,Rui Zhang,Saijun Fan,Liang Ye,Huiqiang Cai,M.S. Xu,B. Zhou,L.S. Li
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (1): e8-e16 被引量:2
标识
DOI:10.1016/j.crad.2023.09.016
摘要

To evaluate the performance of an interpretable computed tomography (CT) radiomic model in predicting the invasiveness of ground-glass nodules (GGNs).The study was conducted retrospectively from 1 August 2017 to 1 August 2022, at three different centres. Two hundred and thirty patients with GGNs were enrolled at centre I as a training cohort. Centres II (n=157) and III (n=156) formed two external validation cohorts. Radiomics features extracted based on CT were reduced by a coarse-fine feature screening strategy. A radiomic model was developed through the use of the LASSO (least absolute shrinkage and selection operator) and XGBoost algorithms. Then, a radiological model was established through multivariate logistic regression analysis. Finally, the interpretability of the model was explored using SHapley Additive exPlanations (SHAP).The radiomic XGBoost model outperformed the radiomic logistic model and radiological model in assessing the invasiveness of GGNs. The area under the curve (AUC) values for the radiomic XGBoost model were 0.885 (95% confidence interval [CI] 0.836-0.923), 0.853 (95% CI 0.790-0.906), and 0.838 (95% CI 0.773-0.902) in the training and the two external validation cohorts, respectively. The SHAP method allowed for both a quantitative and visual representation of how decisions were made using a given model for each individual patient. This can provide a deeper understanding of the decision-making mechanisms within the model and the factors that contribute to its prediction effectiveness.The present interpretable CT radiomics model has the potential to preoperatively evaluate the invasiveness of GGNs. Furthermore, it can provide personalised, image-based clinical-decision support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
小火车应助科研通管家采纳,获得10
2秒前
小火车应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
ljq完成签到,获得积分0
2秒前
韦老虎发布了新的文献求助100
3秒前
暂时贫穷的研究生完成签到,获得积分10
9秒前
831143完成签到 ,获得积分0
9秒前
Star完成签到,获得积分10
11秒前
smile完成签到,获得积分10
12秒前
韦老虎发布了新的文献求助100
17秒前
Wen完成签到 ,获得积分10
23秒前
xiaofenzi完成签到,获得积分10
24秒前
Jimmy_King完成签到 ,获得积分10
26秒前
伶俐书蝶完成签到 ,获得积分10
28秒前
韦老虎发布了新的文献求助100
30秒前
Jeremy637完成签到 ,获得积分10
34秒前
史克珍香完成签到 ,获得积分10
35秒前
39秒前
XD824发布了新的文献求助10
43秒前
韦老虎发布了新的文献求助100
43秒前
白枫完成签到 ,获得积分10
45秒前
张静枝完成签到 ,获得积分10
48秒前
55秒前
韦老虎发布了新的文献求助100
57秒前
loey完成签到,获得积分10
57秒前
58秒前
Rabbit完成签到 ,获得积分10
1分钟前
aaaaa完成签到,获得积分10
1分钟前
锦慜完成签到 ,获得积分10
1分钟前
包容的忆灵完成签到 ,获得积分10
1分钟前
1分钟前
Fang完成签到,获得积分10
1分钟前
fanfan完成签到,获得积分10
1分钟前
Aaron完成签到,获得积分10
1分钟前
fanfan发布了新的文献求助10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800994
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063070
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726